Линейки и маркировка современных процессоров Intel. Процессоры Intel - история развития от А до Я

Линейка мобильных процессоров Intel Haswell

Маркировка, позиционирование, сценарии использования

Этим летом Intel выпустила на рынок новое, четвертое поколение архитектуры Intel Core, имеющее кодовое наименование Haswell (маркировка процессоров начинается с цифры «4» и выглядит как 4xxx). Основным направлением развития процессоров Intel сейчас видит повышение энергоэффективности. Поэтому последние поколения Intel Core демонстрируют не такой уж сильный рост производительности, зато их общее потребление энергии постоянно снижается — за счет и архитектуры, и техпроцесса, и эффективного управления потреблением компонентов. Единственным исключением является интегрированная графика, производительность которой заметно растет из поколения в поколение, пусть и за счет ухудшения потребления энергии.

Эта стратегия прогнозируемо выводит на первый план те устройства, в которых энергоэффективность важна — ноутбуки и ультрабуки, а также только зарождающийся (ибо в прежнем виде его можно было отнести исключительно к нежити) класс планшетов под Windows, основную роль в развитии которого должны сыграть новые процессоры с уменьшенным потреблением энергии.

Напоминаем, что недавно у нас вышли краткие обзоры архитектуры Haswell, которые вполне применимы и к настольным, и к мобильным решениям:

Кроме того, производительность четырехъядерных процессоров Core i7 была исследована в статье со сравнением десктопных и мобильных процессоров . Также отдельно была исследована производительность Core i7-4500U . Наконец, можно ознакомиться с обзорами ноутбуков на Haswell, включающими тестирование производительности: MSI GX70 на самом мощном процессоре Core i7-4930MX, HP Envy 17-j005er .

В этом материале речь пойдет о мобильной линейке Haswell в целом. В первой части мы рассмотрим разделение мобильных процессоров Haswell на серии и линейки, принципы создания индексов для мобильных процессоров, их позиционирование и примерный уровень производительности разных серий внутри всей линейки. Во второй части — более подробно рассмотрим спецификации каждой серии и линейки и их основные особенности, а также перейдем к выводам.

Для тех, кто не знаком с алгоритмом работы Intel Turbo Boost, в конце статьи мы разместили краткое описание этой технологии. Рекомендуем с ним перед чтением остального материала.

Новые буквенные индексы

Традиционно все процессоры Intel Core делятся на три линейки:

  • Intel Core i3
  • Intel Core i5
  • Intel Core i7

Официальная позиция Intel (которую представители компании обычно озвучивают, отвечая на вопрос, почему среди Core i7 бывают как двухъядерные, так и четырехъядерные модели) состоит в том, что процессор относят к той или иной линейке исходя из общего уровня его производительности. Однако в большинстве случаев между процессорами разных линеек есть и архитектурные различия.

Но уже в Sandy Bridge появилось, а в Ivy Bridge стало полноценным еще одно деление процессоров — на мобильные и ультрамобильные решения, в зависимости от уровня энергоэффективности. Причем на сегодня именно эта классификация является базовой: и в мобильной, и в ультрамобильной линейке есть свои Core i3/i5/i7 с весьма различающимся уровнем производительности. В Haswell, с одной стороны, разделение углубилось, а с другой — линейку попытались сделать более стройной, не так вводящей в заблуждение дублированием индексов. Кроме того, окончательно оформился еще один класс — сверхультрамобильные процессоры с индексом Y. Ультрамобильные и мобильные решения по-прежнему маркируются буквами U и M.

Итак, чтобы не путаться, сначала разберем, какие буквенные индексы используются в современной линейке мобильных процессоров Intel Core четвертого поколения:

  • M — мобильный процессор (TDP 37—57 Вт);
  • U — ультрамобильный процессор (TDP 15—28 Вт);
  • Y — процессор с экстремально низким потреблением (TDP 11,5 Вт);
  • Q — четырехъядерный процессор;
  • X — экстремальный процессор (топовое решение);
  • H — процессор под упаковку BGA1364.

Раз уж упомянули TDP (теплопакет), то остановимся на нем чуть подробнее. Следует учитывать, что TDP в современных процессорах Intel не «максимальный», а «номинальный», то есть рассчитывается исходя из нагрузки в реальных задачах при функционировании на штатной частоте, а при включении Turbo Boost и увеличении частоты тепловыделение выходит за рамки заявленного номинального теплопакета — для этого есть отдельный TDP. Также определен TDP при функционировании на минимальной частоте. Таким образом, существует целых три TDP. В данной статье в таблицах используется номинальное значение TDP.

  • Стандартным номинальным TDP для мобильных четырехъядерных процессоров Core i7 является 47 Вт, для двухъядерных — 37 Вт;
  • Литера Х в названии поднимает тепловой пакет с 47 до 57 Вт (сейчас на рынке только один такой процессор — 4930MX);
  • Стандартный TDP для ультрамобильных процессоров U-серии — 15 Вт;
  • Стандартный TDP для процессоров Y-серии — 11,5 Вт;

Цифровые индексы

Индексы процессоров Intel Core четвертого поколения с архитектурой Haswell начинаются с цифры 4, что как раз и говорит о принадлежности к этому поколению (у Ivy Bridge индексы начинались с 3, у Sandy Bridge — с 2). Вторая цифра обозначает принадлежность к линейке процессоров: 0 и 1 — i3, 2 и 3 — i5, 5-9 — i7.

Теперь разберем последние цифры в названии процессоров.

Цифра 8 в конце означает, что эта модель процессора имеет повышенный TDP (с 15 до 28 Вт) и существенно более высокую номинальную частоту. Еще одной отличительной чертой этих процессоров является графика Iris 5100. Они ориентированы на профессиональные мобильные системы, от которых требуется стабильная высокая производительность в любых условиях для постоянной работы с ресурсоемкими задачами. Разгон с помощью Turbo Boost у них тоже есть, но за счет сильно поднятой номинальной частоты разница между номиналом и максимумом не слишком велика.

Цифра 2 в конце названия говорит о сниженном с 47 до 37 Вт TDP у процессора из линейки i7. Но за снижение TDP приходится платить более низкими частотами — минус 200 МГц к базовой и разгонной частотам.

Если вторая с конца цифра в названии — 5, то процессор имеет графическое ядро GT3 — HD 5ххх. Таким образом, если в названии процессора последние две цифры — 50, то в него установлено графическое ядро GT3 HD 5000, если 58 — то Iris 5100, а если 50H — то Iris Pro 5200, потому что Iris Pro 5200 есть только у процессоров в исполнении BGA1364.

Для примера разберем процессор с индексом 4950HQ. Наименование процессора содержит H — значит, упаковка BGA1364; содержит 5 — значит, графическое ядро GT3 HD 5xxx; сочетание 50 и Н дает Iris Pro 5200; Q — четырехъядерный. А поскольку четырехъядерные процессоры есть только в линейке Core i7, то это мобильная серия Core i7. Что подтверждает и вторая цифра названия — 9. Получаем: 4950HQ — это мобильный четырехъядерный восьмипоточный процессор линейки Core i7 с TDP 47 Вт с графикой GT3e Iris Pro 5200 в исполнении BGA.

Теперь, когда мы разобрались с наименованиями, можно поговорить о разделении процессоров на линейки и серии, или, проще говоря, о сегментах рынка.

Серии и линейки Intel Core 4-го поколения

Итак, все современные мобильные процессоры Intel делятся на три больших группы в зависимости от энергопотребления: мобильные (M), ультрамобильные (U) и «сверхультрамобильные» (Y), а также на три линейки (Core i3, i5, i7) в зависимости от производительности. В результате мы можем составить матрицу, которая позволит пользователю подобрать процессор, лучше всего подходящий под его задачи. Попробуем свести все данные в единую таблицу.

Серия/линейка Параметры Core i3 Core i5 Core i7
Мобильная (М) Сегмент ноутбуки ноутбуки ноутбуки
Ядер/потоков 2/4 2/4 2/4, 4/8
Макс. частоты 2,5 ГГц 2,8/3,5 ГГц 3/3,9 ГГц
Turbo Boost нет есть есть
TDP высокий высокий максимальный
Производительность выше среднего высокая максимальная
Автономность ниже среднего ниже среднего невысокая
Ультрамобильная (U) Сегмент ноутбуки/ ультрабуки ноутбуки/ ультрабуки ноутбуки/ ультрабуки
Ядер/потоков 2/4 2/4 2/4
Макс. частоты 2 ГГц 2,6/3,1 ГГц 2,8/3,3 ГГц
Turbo Boost нет есть есть
TDP средний средний средний
Производительность ниже среднего выше среднего высокая
Автономность выше среднего выше среднего выше среднего
Сверхультра-мобильная (Y) Сегмент ультрабуки/ планшеты ультрабуки/ планшеты ультрабуки/ планшеты
Ядер/потоков 2/4 2/4 2/4
Макс. частоты 1,3 ГГц 1,4/1,9 ГГц 1,7/2,9 ГГц
Turbo Boost нет есть есть
TDP низкий низкий низкий
Производительность низкая низкая низкая
Автономность высокая высокая высокая

Для примера: покупателю необходим ноутбук с высокой производительностью процессора и умеренной стоимостью. Раз ноутбук, да еще и производительный, то необходим процессор серии М, а требование умеренной стоимости заставляет остановиться на линейке Core i5. Еще раз подчеркиваем, что в первую очередь следует обращать внимание не на линейку (Core i3, i5, i7), а на серию, потому что в каждой серии могут быть свои Core i5, но уровень производительности у Core i5 из двух разных серий будет существенно отличаться. Например, Y-серия очень экономична, но имеет низкие частоты работы, и процессор Core i5 Y-серии будет менее производительным, чем процессор Core i3 U-серии. А мобильный процессор Core i5 вполне может быть производительнее ультрамобильного Core i7.

Примерный уровень производительности в зависимости от линейки

Давайте попробуем пойти на шаг дальше и составить теоретический рейтинг, который наглядно демонстрировал бы разницу между процессорами разных линеек. За 100 баллов мы возьмем самый слабый представленный процессор — двухъядерный четырехпоточный i3-4010Y с тактовой частотой 1300 МГц и объемом кэша L3 3 МБ. Для сравнения берется самый высокочастотный процессор (на момент написания статьи) из каждой линейки. Основной рейтинг мы решили считать по разгонной частоте (для тех процессоров, у которых есть Turbo Boost), в скобках — рейтинг для номинальной частоты. Таким образом, двухъядерный четырехпоточный процессор с максимальной частотой 2600 МГц получит 200 условных баллов. Увеличение кэша третьего уровня с 3 до 4 МБ принесет ему 2-5% (данные получены на основе реальных тестов и исследований) прироста условных баллов, а увеличение количества ядер с 2 до 4 соответственно удвоит количество баллов, что тоже достижимо в реальности при хорошей многопоточной оптимизации.

Еще раз настоятельно обращаем внимание, что рейтинг является теоретическим и основан по большей части на технических параметрах процессоров. В реальности сочетается большое количество факторов, поэтому выигрыш в производительности относительно самой слабой модели линейки практически наверняка не будет таким большим, как в теории. Таким образом, не стоит прямо переносить полученное соотношение на реальную жизнь — сделать окончательные выводы можно лишь по результатам тестирования в реальных приложениях. Тем не менее, эта оценка позволяет примерно оценить место процессора в линейке и его позиционирование.

Итак, некоторые предварительные замечания:

  • Процессоры Core i7 U-серии будут примерно на 10% опережать Core i5 благодаря чуть большей тактовой частоте и большему объему кэша третьего уровня.
  • Разница между процессорами Core i5 и Core i3 U-серии c TDP 28 Вт без учета Turbo Boost составляет около 30%, т. е. в идеале производительность тоже будет различаться на 30%. Если учитывать возможности Turbo Boost, то разница по частотам составит порядка 55%. Если же проводить сравнение процессоров Core i5 и Core i3 U-серии с TDP 15 Вт, то при устойчивой работе на максимальной частоте Core i5 будет иметь частоту на 60% выше. Однако номинальная частота у него чуть ниже, т. е. при работе на номинальной частоте он может даже чуть уступать Core i3.
  • В М-серии большую роль играет наличие у Core i7 4 ядер и 8 потоков, однако тут надо помнить, что это преимущество проявляется только в оптимизированном ПО (как правило, профессиональном). У процессоров Core i7 с двумя ядрами производительность будет чуть выше за счет более высоких разгонных частот и немного большего объема кэша L3.
  • В серии Y процессор Core i5 имеет базовую частоту на 7,7% и разгонную на 50% выше, чем Core i3. Но и в этом случае есть дополнительные соображения — та же энергоэффективность, шумность работы системы охлаждения и т. д.
  • Если же сравнивать между собой процессоры серий U и Y, то только частотный разрыв между U- и Y-процессорами Core i3 составляет 54%, а у процессоров Core i5 — 63% на максимальной разгонной частоте.

Итак, рассчитаем балл для каждой линейки. Напомним, основной балл считается по максимальным разгонным частотам, балл в скобках — по номинальным (т. е. без разгона по Turbo Boost). Также мы рассчитали коэффициент производительности на Вт.

Условный балл TDP (макс./ном.)¹, Вт Коэффициент²
i3 Y-серия (4010Y) 100 11,5 869
i3 U-серия (4100Y) 138 15 920
i5 Y-серия (4300Y) 177 (123) ??³/11,5 —/1069
i3 M-серия (4100M) 192 37 519
i5 U-серия (4350U) 223 (108) 25/15 892/720
i7 Y-серия (4610Y) 228 (133) ??³/11,5 —/1156
i7 U-серия (4650M) 258 (133) 25/15 1032/883
i5 M-серия (4330M) 269 (215) 45/37 598/281
i7 M-серия, 2/4 (4600M) 282 (228) 45/37 616/627
i7 M-серия, 4/8 (4900MQ) 596 (439) 55/47 1084/934

¹ макс. — при максимальной разгонной, ном. — при номинальной частоте
² коэффициент — условная производительность, поделенная на TDP и умноженная на 100
³ данные о разгонном TDP для этих процессоров неизвестны

По приведенной таблице можно сделать следующие наблюдения:

  • Двухъядерные процессоры Core i7 серий U и M лишь немногим быстрее процессоров Core i5 аналогичных серий. Это касается сравнения как для базовой, так и для разгонной частот.
  • Процессоры Core i5 серий U и M даже на базовой частоте должны быть заметно быстрее Core i3 аналогичных серий, а в Boost-режиме и вовсе уйдут далеко вперед.
  • В серии Y разница между процессорами на минимальных частотах невелика, но с разгоном Turbo Boost Core i5 и Core i7 должны уходить далеко вперед. Другое дело, что величина и, главное, стабильность разгона очень зависят от эффективности охлаждения. А с этим, учитывая ориентацию этих процессоров на планшеты (особенно — безвентиляторные) могут быть проблемы.
  • Core i7 серии U практически дотягивается по производительности до Core i5 M-серии. Там есть другие факторы (для него сложнее достичь стабильности из-за менее эффективного охлаждения, да и стоит он дороже), но в целом это неплохой результат.

Что же касается соотношения энергопотребления и рейтинга производительности, то можно сделать следующие выводы:

  • Несмотря на увеличение TDP при переходе процессора в Boost-режим, энергоэффективность повышается. Это обусловлено тем, что относительное увеличение частоты больше относительного увеличения TDP;
  • Ранжирование процессоров различных серий (M, U, Y) происходит не только по уменьшению TDP, но и по увеличению энергоэффективности — к примеру, процессоры Y-серии показывают бо́льшую энергоэффективность, чем процессоры U-серии;
  • Стоит заметить, что с увеличением количества ядер, а следовательно, и потоков, энергоэффективность также повышается. Это можно объяснить тем, что удваиваются лишь сами процессорные ядра, но не сопутствующие контроллеры DMI, PCI Express и ИКП.

Из последнего можно сделать интересный вывод: если приложение хорошо распараллеливается, то четырехъядерный процессор окажется более энергоэффективным, чем двухъядерный: он быстрее закончит вычисления и вернется в режим простоя. Как итог, многоядерность может стать следующим шагом в борьбе за повышение энергоэффективности. В принципе, эту тенденцию можно отметить и в лагере ARM.

Итак, хотя рейтинг сугубо теоретический, и не факт, что он точно отражает реальную расстановку сил, но даже он позволяет сделать определенные выводы касательно распределения процессоров в линейке, их энергоэффективности и соотношения по этим параметрам между собой.

Haswell против Ivy Bridge

Хотя процессоры Haswell уже довольно давно вышли на рынок, присутствие процессоров Ivy Bridge в готовых решениях даже сейчас остается довольно высоким. Особых революций при переходе к Haswell, с точки зрения потребителя, не произошло (хотя рост энергоэффективности для некоторых сегментов выглядит внушительно), что порождает вопросы: а стоит ли обязательно выбирать четвертое поколение или можно обойтись третьим?

Сравнивать процессоры Core четвертого поколения с третьим напрямую сложно, потому что производитель поменял границы TDP:

  • серия M у Core третьего поколения имеет TDP 35 Вт, а у четвертого — 37 Вт;
  • серия U у Core третьего поколения имеет TDP 17 Вт, а у четвертого — 15 Вт;
  • серия Y у Core третьего поколения имеет TDP 13 Вт, а у четвертого — 11,5 Вт.

И если для ультрамобильных линеек TDP понизился, то для более производительной серии М он даже вырос. Тем не менее, попробуем провести примерное сравнение:

  • Топовый четырехъядерный процессор Core i7 третьего поколения имел частоты 3(3,9) ГГц, у четвертого поколения — те же 3(3,9) ГГц, то есть разница в производительности может быть обусловлена только архитектурными улучшениями — не более 10%. Хотя, стоит заметить, при плотном использовании FMA3 четвертое поколение опередит третье на 30-70%.
  • Топовые двухъядерные процессоры Core i7 третьего поколения М-серии и U-серии имели частоты 2,9(3,6) ГГц и 2(3,2) ГГц соответственно, а четвертого — 2,9(3,6) ГГц и 2,1(3,3) ГГц. Как видим, частоты если и выросли, то незначительно, так что и уровень производительности может вырасти лишь минимально, за счет оптимизации архитектуры. Опять же, если ПО знает о FMA3 и умеет активно использовать это расширение, то четвертое поколение получит солидное преимущество.
  • Топовые двухъядерные процессоры Core i5 третьего поколения М-серии и U-серии имели частоты 2,8(3,5) ГГц и 1,8(2,8) ГГц соответственно, а четвертого — 2,8(3,5) ГГц и 1,9(2,9) ГГц. Ситуация аналогична предыдущей.
  • Топовые двухъядерные процессоры Core i3 третьего поколения М-серии и U-серии имели частоты 2,5 ГГц и 1,8 ГГц соответственно, а четвертого — 2,6 ГГц и 2 ГГц. Ситуация снова повторяется.
  • Топовые двухъядерные процессоры Core i3, i5 и i7 третьего поколения Y-серии имели частоты 1,4 ГГц, 1,5(2,3) ГГц и 1,5(2,6) ГГц соответственно, а четвертого — 1,3 ГГц, 1,4(1,9) ГГц и 1,7(2,9) ГГц.

В целом, тактовые частоты в новом поколении практически не выросли, так что незначительный выигрыш в производительности получается только за счет оптимизации архитектуры. Заметное преимущество четвертое поколение Core получит при использовании ПО, оптимизированного под FMA3. Ну и не стоит забывать про более быстрое графическое ядро — там оптимизация способна принести существенный прирост.

Что касается относительной разницы в производительности внутри линеек, то по этому показателю поколения Intel Core третьего и четвертого поколений близки.

Таким образом, можно сделать вывод, что в новом поколении Intel решила снизить TDP вместо повышения частот работы. В результате прирост скорости работы ниже, чем мог бы быть, зато удалось добиться повышения энергоэффективности.

Подходящие задачи для разных процессоров Intel Core четвертого поколения

Теперь, когда мы разобрались с производительностью, можно примерно оценить, под какие задачи лучше всего подойдет та или иная линейка Core четвертого поколения. Сведем данные в таблицу.

Серия/линейка Core i3 Core i5 Core i7
Мобильная М
  • серфинг Сети
  • офисное окружение
  • старые и казуальные игры

Все предыдущее плюс:

  • профессиональное окружение на грани комфорта

Все предыдущее плюс:

  • профессиональное окружение (3D-моделирование, CAD, профессиональная фото- и видеообработка и т. д.)
Ультрамобильная U
  • серфинг Сети
  • офисное окружение
  • старые и казуальные игры

Все предыдущее плюс:

  • корпоративное окружение (к примеру, системы бухгалтерского учета)
  • нетребовательные компьютерные игры при наличии дискретной графики
  • профессиональное окружение на грани комфорта (вряд ли получится комфортно работать в том же 3ds max)
Сверхультра-мобильная Y
  • серфинг Сети
  • простое офисное окружение
  • старые и казуальные игры
  • офисное окружение
  • старые и казуальные игры

Из этой таблицы тоже хорошо видно, что в первую очередь стоит обращать внимание на серию процессора (M, U, Y), а уже потом на линейку (Core i3, i5, i7), поскольку линейка определяет соотношение производительности процессоров только внутри серии, а между сериями производительность заметно отличается. Это хорошо видно на сравнении i3 U-серии и i5 Y-серии: первый в данном случае будет производительнее второго.

Итак, какие выводы можно сделать по этой таблице? Процессоры Core i3 любой серии, как мы уже отмечали, интересны прежде всего ценой. Поэтому обращать на них внимание стоит, если вы стеснены в средствах и готовы смириться с проигрышем как по производительности, так и по энергоэффективности.

Мобильный Core i7 стои́т особняком из-за архитектурных отличий: четыре ядра, восемь потоков и заметно больше кэша L3. В результате он способен работать с профессиональными ресурсоемкими приложениями и показывать чрезвычайно высокий для мобильной системы уровень производительности. Но для этого ПО должно быть оптимизировано под использование большого количества ядер — в однопоточном ПО свои достоинства он не раскроет. И второе — эти процессоры требуют громоздкой системы охлаждения, т. е. устанавливаются только в крупные ноутбуки с большой толщиной, да и с автономностью у них не очень.

Core i5 мобильной серии предоставляют хороший уровень производительности, достаточный для выполнения не только домашне-офисных, но и каких-то полупрофессиональных задач. Например, для обработки фото и видео. По всем параметрам (потребление энергии, выделение тепла, автономность) эти процессоры занимают промежуточное положение между Core i7 М-серии и ультрамобильной линейкой. В общем, это сбалансированное решение, подходящее тем, кому производительность важнее, чем тонкий и легкий корпус.

Двухъядерные мобильные Core i7 — это примерно то же самое, что Core i5 М-серии, только немного производительнее и, как правило, заметно дороже.

Ультрамобильные Core i7 имеют примерно тот же уровень производительности, что и мобильные Core i5, но с оговорками: если система охлаждения выдержит длительную работу на повышенной частоте. Да и греются они под нагрузкой изрядно, что часто приводит к сильному нагреву всего корпуса ноутбука. Судя по всему, они достаточно дорогие, поэтому их установка оправдана только для топовых моделей. Зато их можно ставить в тонкие ноутбуки и ультрабуки, обеспечивая высокий уровень производительности при тонком корпусе и хорошей автономности. Это делает их отличным выбором для часто путешествующих профессиональных пользователей, которым важна энергоэффективность и малый вес, но часто требуется высокая производительность.

Ультрамобильные Core i5 показывают меньшую производительность по сравению со «старшим братом» серии, но справляются с любой офисной нагрузкой, при этом обладают хорошей энергоэффективностью и гораздо демократичнее по цене. В общем, это универсальное решение для пользователей, которые не работают в ресурсоемких приложениях, а ограничиваются офисными программами и интернетом, и при этом хотели бы иметь ноутбук/ультрабук, подходящий для путешествий, т. е. легкий, с небольшим весом и долго работающий от батарей.

Наконец, Y-серия тоже стоит особняком. По производительности ее Core i7 при удаче дотянется до ультрамобильного Core i5, но этого от него, по большому счету, никто не ждет. Для серии Y главное — высокая энергоэффективность и малое тепловыделение, позволяющее создать в том числе и безвентиляторные системы. Что же касается производительности, то достаточно минимально допустимого уровня, не вызывающего раздражения.

Кратко о Turbo Boost

На случай, если некоторые наши читатели подзабыли, как работает технология разгона Turbo Boost, предлагаем вам краткое описание ее работы.

Если грубо, то система Turbo Boost может динамически повышать частоту процессора сверх установленной благодаря тому, что постоянно следит, не выходит ли процессор за штатные режимы работы.

Процессор может работать только в определенном диапазоне температур, т. е. его работоспособность зависит от нагрева, а нагрев — от способности системы охлаждения эффективно отводить от него тепло. Но поскольку заранее неизвестно, с какой системой охлаждения будет работать процессор в системе пользователя, для каждой модели процессора указывается два параметра: частота работы и количество тепла, которое необходимо отводить от процессора при максимальной нагрузке на этой частоте. Поскольку эти параметры зависят от эффективности и правильной работы системы охлаждения, а также внешних условий (в первую очередь, температуры окружающей среды), производителю приходилось занижать частоту работы процессора, чтобы даже при самых неблагоприятных условиях работы он не терял стабильность. Технология Turbo Boost отслеживает внутренние параметры процессора и позволяет ему, если внешние условия благоприятны, работать на более высокой частоте.

Первоначально Intel объясняла, что технология Turbo Boost использует «эффект температурной инерции». В большинстве случаев в современных системах процессор находится в состоянии простоя, но время от времени на короткий период от него требуется максимальная отдача. Если в этот момент сильно поднять частоту работы процессора, то он быстрее справится с задачей и раньше вернется в состояние простоя. При этом температура процессора растет не сразу, а постепенно, поэтому при краткосрочной работе на очень высокой частоте процессор не успеет нагреться так, чтобы выйти за безопасные рамки.

В реальности довольно быстро выяснилось, что с хорошей системой охлаждения процессор способен работать под нагрузкой даже на повышенной частоте неограниченно долго. Таким образом, долгое время максимальная частота разгона была абсолютно рабочей, а к номинальной процессор возвращался лишь в экстремальных случаях или если производитель делал некачественную систему охлаждения для конкретного ноутбука.

Для того чтобы не допустить перегрева и выхода из строя процессора, система Turbo Boost в современной реализации постоянно отслеживает следующие параметры его работы:

  • температура чипа;
  • потребляемый ток;
  • потребляемая мощность;
  • число загруженных компонентов.

Современные системы на Ivy Bridge способны работать на повышенной частоте практически во всех режимах, кроме одновременной серьезной нагрузки на центральный процессор и графику. Что касается Intel Haswell, то пока у нас нет достаточной статистики по поведению этой платформы под разгоном.

Прим. автора: Стоит заметить, что температура чипа косвенно влияет и на потребляемую мощность — данное влияние становится явным при ближайшем рассмотрении физического устройства самого кристалла, поскольку электрическое сопротивление полупроводниковых материалов увеличивается с ростом температуры, а это в свою очередь ведет к увеличению потребления электроэнергии. Таким образом, процессор при температуре 90 градусов будет потреблять больше электроэнергии, чем при температуре 40 градусов. А поскольку процессор «подогревает» и текстолит материнской платы с дорожками, и окружающие компоненты, то и их потери электроэнергии на преодоление более высокого сопротивления также сказываются на энергопотреблении. Данное заключение легко подтверждается разгоном как «на воздухе», так и экстремальным. Всем оверклокерам известно, что более производительный кулер позволяет получить дополнительные мегагерцы, а уж эффект сверхпроводимости проводников при температуре близкой к абсолютному нулю, когда электрическое сопротивление стремится к нулю, знаком всем еще со школьной физики. Именно поэтому при разгоне с охлаждением жидким азотом и получается достигать таких высоких частот. Возвращаясь к зависимости электрического сопротивления от температуры, можно также сказать, что в какой-то мере процессор еще и сам себя подогревает: при повышении температуры, когда система охлаждения не справляется, повышается и электрическое сопротивление, что в свою очередь увеличивает потребляемую мощность. А это ведет к увеличению тепловыделения, что приводит к повышению температуры... Кроме того, не стоит забывать, что высокие температуры сокращают срок жизни процессора. Хотя производители и заявляют достаточно высокие максимальные температуры для чипов, стоит всё же по возможности удерживать температуру невысокой.

Кстати, вполне вероятно, что «крутить» вентилятор на более высоких оборотах, когда за счет него увеличится потребление электроэнергии системы, выгоднее по энергопотреблению, чем иметь процессор с высокой температурой, которая повлечет за собой потери электроэнергии на возросшем сопротивлении.

Как видите, температура может и не являться прямым ограничивающим фактором для Turbo Boost, то есть процессор будет иметь вполне приемлемую температуру и не уходить в троттлинг, но косвенно она влияет на другой ограничивающий фактор — потребляемую мощность. Поэтому про температуру забывать не стоит.

Подводя итог, технология Turbo Boost позволяет, при благоприятных внешних условиях работы, повышать частоту процессора сверх гарантированного номинала и тем обеспечивать гораздо более высокий уровень производительности. Это свойство особенно ценно в мобильных системах, где оно позволяет добиться хорошего баланса между производительностью и нагревом.

Одноклассники

В этой статье будут детально рассмотрены последние поколения процессоров Intelна основе архитектуры «Кор». Эта компания занимает ведущее положение на рынке компьютерных систем, и большинство ПК на текущий момент собираются именно на ее полупроводниковых чипах.

Стратегия развития компании «Интел»

Все предыдущие поколения были подчинены двухлетнему циклу. Подобная стратегия выпуска обновлений от данной компании получила название «Тик-Так». Первый этап, называемый «Тик», заключался в переводе ЦПУ на новый технологический процесс. Например, в плане архитектуры поколения «Санди Бридж» (2-е поколение) и «Иви Бридж» (3-е поколение) были практически идентичными. Но технология производства первых базировалась на нормах 32 нм, а вторых — 22 нм. То же самое можно сказать и про «ХасВелл» (4-е поколение, 22 нм) и «БроадВелл» (5-е поколение, 14 нм). В свою очередь, этап «Так» означает кардинальное изменение архитектуры полупроводниковых кристаллов и существенный прирост производительности. В качестве примера можно привести такие переходы:

    1-е поколение Westmere и 2-е поколение «Санди Бридж». Технологический процесс в этом случае был идентичным — 32 нм, а вот изменения в плане архитектуры чипа существенные — северный мост материнской платы и встроенный графический ускоритель перенесены на ЦПУ.

    3-е поколение «Иви Бридж» и 4-е поколение «ХасВелл». Оптимизировано энергопотребление компьютерной системы, повышены тактовые частоты чипов.

    5-е поколение «БроадВелл» и 6-е поколение «СкайЛайк». Снова повышены частота, еще более улучшено энергопотребление и добавлены несколько новых инструкций, которые улучшают быстродействие.

Сегментация процессорных решений на базе архитектуры «Кор»

Центральные процессорные устройства компании «Интел» имеют следующее позиционирование:



В нем я на практике рассмотрел влияние эффекта процессорозависимости на производительность графической подсистемы. Если коротко, то современным играм требуется чип минимум с четырьмя потоками, но никак не меньше. Влияет на быстродействие графического адаптера в играх и тактовая частота центрального процессора. Поэтому верно утверждение, что мощной видеокарте необходим мощный чип. Примеры — ниже.

Цель этого материала — разобраться в номенклатуре и особенностях современных процессоров. В 2016 году и AMD, и Intel располагают большим количеством актуальных моделей, разделенных по нескольким линейкам. Вот и получается, что производителя всего два, а чипов в продаже — несколько десятков. Быть может, прозвучит шаблонно, но выбор процессора крайне важен, так как он одновременно определяет, как будет использоваться платформа. А платформа отвечает за общую функциональность системы и возможность дальнейшего апгрейда. Но начнем мы с более насущного вопроса.

Есть ли смысл менять процессор?

Вполне логичный вопрос для любого юзера. Каждый год либо AMD, либо Intel, либо все вместе предлагают обывателям что-то новенькое. Логично предположить, что предыдущее поколение процессоров автоматически становится неактуальным, да и вообще старые чипы превращаются в тыкву. Но как бы не так! К сожалению/счастью (нужное подчеркнуть), производительность современных решений растет крайне медленно. Лично я в своих обзорах который год твержу, что в частом апгрейде центрального процессора нет никакой необходимости. Это не iPhone, который оголтелые фанатики меняют каждый год, дабы постоянно быть в тренде.

Счастливые обладатели Intel Sandy Bridge (и выше) и AMD Bulldozer могут спать спокойно

Приведу реальный пример. Возьмем пять флагманских 4-ядерных процессоров разных поколений Core. Самый современный чип — Core i7-6700K (шестое (крайнее) поколение Core) — вышел летом прошлого года. Модель Core i7-2600K (второе поколение Core) появилась, когда нашей страной руководил Дмитрий Медведев, а доллар оценивался в 31 рубль. Разница в производительности в CINEBENCH R15 между этими чипами составляет всего 34,8%. И это за пять лет эволюции поколения Core. За это время Intel сменила два техпроцесса и выпустила первые чипы, способные работать с тактовой частотой 4 ГГц.

В играх разница между этими чипами окажется еще меньше. Например, в GTA V (весьма процессорозависимом приложении) Core i7-6700K быстрее Core i7-2600K всего на 7%.

Вывод прост: обладатели чипов поколения Sandy Bridge (2011 год), а также более поздних решений могут спать спокойно. А вот переход с какого-нибудь Core 2 Duo на Core i5/i7 последнего поколения рационален и даст ощутимый прирост быстродействия.

У AMD та же ситуация. Есть процессоры семейства Bulldozer 2011 года выпуска. Они мало в чем уступают моделям, вышедшим в прошлом году. Где-то на 10-20%.

Выбор процессора — выбор платформы

Итак, выбор процессора — это выбор платформы. Иногда происходит наоборот. Например, если вы собираете игровой компьютер из трех-четырех видеокарт. И все же большое количество комментариев в рубрике « » говорит о том, что сначала пользователь определяется с чипом, а уже потом с материнской платой.

У AMD и Intel есть сразу несколько актуальных платформ. У «красных» — это , и , у «синих» — , и . Платформа несет то же название, что и процессорный разъем. Для большей наглядности приведу следующую таблицу.

Позиционирование платформ

Платформа

Актуальные процессоры

Позиционирование

AMD Kabini: Athlon 5350/5150, Sempron 3850/2650

Офисные ПК, компактные HTPC

AMD Kaveri: A10/A8/A6 7000-й серии, Athlon X4 860K/840

AMD Richland: A10/A8/A6 6000-й серии, Athlon X4 760K/750K

HTPC, игровые ПК

AMD FX: 4000, 6000, 8000/9000

Игровые ПК, рабочие станции

Intel Haswell: Celeron, Pentium, Core i3/i5/i7

Intel Broadwell: Core i5/i7

Intel Skylake: Celeron, Pentium, Core i3/i5/i7

Офисные ПК, HTPC, игровые ПК, рабочие станции

Intel Haswell-E: Core i7

Игровые ПК, рабочие станции

Компания Intel, как правило, предлагает одну платформу на два поколения процессоров. Следовательно, для LGA1151 и LGA2011-v3 в скором времени выйдут новые чипы. в развитии. AM3+ представили в 2011 году, с тех пор она не менялась. FM2+ уже больше двух лет. Эти платформы — конечные. Принципиально новых чипов для них больше не выпустят. Новые процессоры AMD Zen, анонс которых намечен на этот год, получат новую платформу AM4. На данный момент решения Intel современнее и функциональнее. Доказать это очень просто.

Основные характеристики центрального процессора

На производительность любого центрального процессора влияют несколько ключевых параметров. Влияют в совокупности. Нельзя определить одну характеристику, которой и обусловлен уровень быстродействия того или иного чипа. Простые примеры и сравнения нам в помощь.

Встречал многих людей, которые считают, что на производительность центрального процессора влияет техпроцесс производства. Мол, чем он тоньше (меньше) — тем быстрее чип. Нет, это не так. Например, флагманскими процессорами AMD считается 32-нанометровая серия чипов FX, а не 28-нанометровые гибридники Kaveri A10/8/6. У Intel схожая ситуация с процессорами Core i7 поколений Haswell-E и Skylake: 22 нанометра против 14 нанометров!

Более современный техпроцесс не говорит о лучшей производительности процессора

Техпроцесс указывает на современность модели, а также на косвенные параметры чипа. Меньше нанометров — больше транзисторов у кристалла. Меньше нанометров — меньше энергопотребление (при одинаковых частотах и одинаковом транзисторном бюджете); меньше нанометров — больше чипов на кремниевой пластине (выгоднее производство, правда, с некоторыми оговорками).

Именно использование более совершенных технологических норм позволяет развиваться интегральным схемам в том числе и экстенсивно. Десять лет назад Intel выпустила двухъядерный Pentium D 955 с уровнем TDP (типичное энергопотребление процессора в рабочем режиме) порядка 130 Вт. В этом году чипмейкер представит первый настольный 10-ядерный «камень» Broadwell-E со схожим показателем энергопотребления. Его произведут по 14-нанометровому техпроцессу.

TDP — расчетная тепловая мощность. Энергия, рассеиваемая при максимальной нагрузке процессора

В настоящее время уровень TDP современных настольных (используемых в декстопах) процессоров укладывается в диапазон 35-220 Вт. Разброс приличный, ведь и моделей очень много. Практически все чипы требуют активного охлаждения. Чем горячее «камень», тем более эффективный кулер ему требуется.

Количество ядер — один из важнейших параметров любого центрального процессора. Однако в этом вопросе многое решает софт. Если программа не умеет распараллеливать нагрузку между всеми потоками чипа, то толку от этого не очень много. На производительность процессора в таком случае будут влиять другие параметры.

Еще один пример. Возьмем 8-ядерный флагманский чип AMD FX-9590 и сравним его с топовым 8-ядерным процессором Intel Core i7-5960X. При одинаковом количестве «голов» разница в быстродействии у этих решений достигает практически двукратной величины! Все из-за архитектуры — еще одного важного параметра CPU.

Ядро ядру — рознь

Все современные чипы AMD имеют модульную архитектуру. Если коротко, то в один модуль помещено два ядра, которые пользуются определенным набором общих компонентов. Например, кэшем второго уровня. В линейке есть процессоры FX-8000/9000. У них четыре модуля. Формально эти чипы имеют полное право считаться 8-ядерными, но по факту они 4-ядерные. Отсюда и такая колоссальная разница между FX-9590 и Core i7-5960X. Маркетологи компании, впрочем, мертвой хваткой вцепились в более привлекательную цифру 8. В итоге имеем то, что имеем.

Архитектура — это не только компоновка ядер внутри кристалла. Есть множество других параметров, которые определяют производительность интегральной схемы (чипа). Как мы уже выяснили, разница в быстродействии между архитектурами Intel несущественная: Skylake быстрее Broadwell на 5%, а Broadwell быстрее Haswell еще на 5%. Поэтому и возникают случаи, когда процессор старого поколения оказывается как минимум не медленнее новой модели. Например, при одинаковой стоимости Core i5-6400 (Skylake, 2015 год) в ряде случаев не выигрывает у Core i5-4460 (Haswell, 2013 год). Ответ прост: 5-10-процентный архитектурный гандикап легко отыгрывается за счет работы на более высокой тактовой частоте.

Соответственно, частота — еще один важный параметр центрального процессора. И он у всех на слуху. Именно частота расставляет чипы по местам в своих линейках. Именно частота определяет конечную стоимость продукта. Самый дешевый 8-ядерный процессор AMD (FX-8320E) стоит 10 000 рублей, а самый дорогой (FX-9590) — 22 000 рублей. Разные у чипов только количество мегагерц и, как следствие, уровень TDP.

Еще один параметр большинства современных центральных процессоров — производительность встроенного графического ядра. Уже давно мейнстрим-линейки чипов AMD и Intel оснащены интегрированным видео. Половина площади чипа отводится как раз для встроенной графики. И она, что неудивительно, заметно прогрессирует от поколения к поколению. Интегрированным GPU, будь то решения AMD или Intel, все еще далеко до дискретных видеокарт среднего ценового диапазона. Поэтому собрать по-настоящему игровой системный блок с использованием только встроенной графики нереально. И все же простенькие игры в разрешениях вплоть до 1080p на низких/средних настройках запустятся. Процессор со встроенной графикой — идеальное решение для офисного компьютера или же мультимедийного системного блока в компактном корпусе (HTPC).

Итог банален: судить о производительности любого центрального процессора только по одному параметру нельзя. Лишь совокупность характеристик дает понимание того, что это за чип. Сузить круг рассматриваемых процессоров очень просто. Из современных у AMD — это чипы FX для платформы AM3+ и гибридные решения A10/8/6 6000-й и 7000-й серий (плюс Athlon X4) для FM2+. У Intel — процессоры Haswell для платформы LGA1150, Haswell-E (по сути, одна модель) для LGA2011-v3 и новейшие Skylake для LGA1151.

Процессоры AMD

Повторюсь, сложность выбора процессора заключается в том, что моделей в продаже очень много. Элементарно путаешься в этом многообразии маркировок. Вот есть у AMD гибридные процессоры A8 и A10. В обе линейки входят только четырехъядерные чипы. Но в чем же разница? Об этом и поговорим.

Начнем с позиционирования. Процессоры AMD FX — топовые чипы для платформы AM3+. На их основе собираются игровые системные блоки и рабочие станции. Гибридные процессоры (со встроенным видео) А-серии, а также Athlon X4 (без встроенной графики) — чипы среднего класса для платформы FM2+.

Серия AMD FX делится на четырехъядерные, шестиядерные и восьмиядерные модели. Все процессоры не имеют встроенного графического ядра. Следовательно, для полноценной сборки потребуется либо материнская плата со встроенным видео, либо дискретный 3D-ускоритель.

Платформа

Архитектура, техпроцесс

Piledriver, 32 нм

Поддерживаются чипсетами

740G, 760, 760G, 770, 780V, 870, 880G, 890FX, 890GX, 970, 990FX, 990X, nForce 520 LE

Количество ядер

Объем кэша второго уровня

2х 2 Мбайт

3х 2 Мбайт

4х 2 Мбайт

Объем кэша третьего уровня

Тактовая частота

3800-4200 МГц

3500-3900 МГц

3200-4700 МГц

Встроенная графика

Уровень TDP

В продаже встречаются модели с буквой «Е» в названии. Например, AMD FX-8320E. Этот чип относится к касте энергоэффективных решений — их уровень TDP не превышает 95 Вт, что для 32-нанометровых 8-ядерников очень даже недурно, но в целом — по-прежнему много.

Все «камни» для платформы AM3+ имеют разблокированный множитель. Это значит, что пользователю . Точнее, его упрощенный (насколько это возможно) вариант. При желании скорость работы большинства FX-чипов реально увеличить до 4,5-4,7 ГГц. Необходимо лишь позаботиться о качественном охлаждении. К тому же на подобные подвиги способна далеко не каждая материнская плата.

Все процессоры для платформы AM3+ — с разблокированным множителем

Все процессоры серии FX поддерживают технологию Turbo Core — автоматический разгон. Например, чип FX-8300 самостоятельно может поднимать частоту с 3,3 ГГц до 4,2 ГГц. Делает он это непостоянно, на короткие промежутки времени. И все же.

Серия гибридных процессоров А10/А8/А6 делится на двухъядерные и четырехъядерные модели. Все чипы оснащены встроенным графическом ядром. Вычислительная часть основана на более прогрессивной архитектуре Steamroller. Она несколько быстрее Piledriver, которая используется в FX. Зато APU не имеют кэша третьего уровня. Рассмотрим основные особенности процессоров Kaveri (они же — Godavari).

Платформа

Архитектура, техпроцесс

Steamroller, 28 нм

Поддерживаемая оперативная память

Поддерживаются чипсетами

A55, A58, A68H, A68M, A70M, A75, A78, A85, A88X

Количество ядер

Объем кэша второго уровня

2х 2 Мбайт

2х 2 Мбайт

Объем кэша третьего уровня

Тактовая частота

3000-3600 МГц

3400-3900 МГц

Встроенная графика

Radeon R5, 256 шейдерных процессоров, 756 МГц

Radeon R7, 384 шейдерных процессора, 720-757 МГц

Radeon R7, 512 шейдерных процессоров, 720-866 МГц

Уровень TDP

Как видите, в процессоры A8 и A10 встроены разные графические ядра. Вычислительная часть у этих гибридников идентичная. В продаже можно найти модель с литерой «К» в названии. Например, AMD A10-7870K. Такая маркировка свидетельствует о том, что чип имеет разблокированный множитель. Другие процессоры тоже подвергаются оверклоку, но тут все зависит от прыти материнской платы — сколько мегагерц по шине она возьмет.

Наглядный пример. Есть два процессора: A8-7670K (10 000 руб.) и A10-7800 (12 000 руб.). Вторая модель стоит выше по рангу. К тому же стоит дороже на 2000 рублей. Но в вычислениях, не связанных с графикой, A8-7670K окажется быстрее за счет более высокой тактовой частоты: 3600 МГц против 3500 МГц.

Гибридные процессоры делятся в зависимости от количества ядер, частоты и типа встроенной графики

Есть и исключение из правил. Например, модель A10-7700K относится к линейке А10, но встроенная графика этого гибридного процессора соответствует уровню чипов серии A8 с 384 шейдерными блоками. Также я не стал включать в таблицу чипы серии A4-7000. Это очень медленные процессоры с одним модулем (двумя медленными ядрами) и очень медленной встроенной графикой.

Есть для платформы FM2+ чипы серии Athlon. Это те же Kaveri, но с заблокированным графическим ядром. К примеру, модель Athlon X4 860K — это тот же A10-7850K, но без встроенного GPU. Если априори рассматривается вариант сборки системы с дискретной видеокартой, то есть смысл брать именно Athlon Х4.

Гибридные процессоры также, как и FX, поддерживают функцию Turbo Core. Вот модель A10-7850K автоматически разгоняется с 3,7 ГГц до 4 ГГц.

Какая линейка процессоров лучше: FX или A10/8/6? Все весьма банально. Чипы FX, пусть и произведены по старому техпроцессу, пусть и построены на более медленной архитектуре Piledriver, пусть и являются частью откровенно устаревшей платформы, но они все же несколько быстрее. Хотя бы потому, что есть 6- и 8-ядерные модели. А еще в продаже несколько продуктов, тактовая частота которых перевалила за 4 ГГц. Плюс разгоняются они получше Kaveri. Гибридные процессоры пригодятся там, где необходима встроенная графика. В других случаях, например, при сборке игрового компьютера, лучше взять FX.

Процессоры Intel

Для процессоров Intel выделяем три современные платформы: LGA1150 для Haswell, LGA2011-v3 для Haswell-E и LGA1151 для Skylake. Получается два направления среднего класса и одно — экстремальное, в которое входят, по сути, перемаркированные серверные чипы Xeon. Сами по себе платформы LGA1150 и LGA1151 очень похожи, «камни» сформированы в линейки по cхожим принципам.

Платформа

Архитектура, техпроцесс

Haswell, 22 нм

Поддерживаемая оперативная память

Поддерживаются чипсетами

B85, C222, C224, C226, H61, H81, H87, H97, Q87, Z87, Z97

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

2400-2900 МГц

2600-3600 МГц

2400-3800 МГц

1900-3500 МГц

2000-4000 МГц

Поддержка Turbo Boost

Поддержка Hyper-threading

Встроенная графика

HD Graphics, 10 исполнительных устройств, 1050 МГц

HD Graphics, 10 исполнительных устройств, 1100 МГц

HD Graphics 4400, 20 исполнительных устройств, 1115 МГц

HD Graphics 4600, 20 исполнительных устройств, 1200 МГц

Graphics HD 4600, 20 исполнительных устройств, 1250 МГц

Уровень TDP

С процессорами Haswell может выйти путаница. В названии чипов серий Core i3/i5/i7 строго есть цифра «4». Core i3-4130, например. А вот бюджетные «камни» Celeron и Pentium имеют другие порядковые номера. Pentium G3260 и Celeron G1840. Важно другое: эти чипы не имеют поддержки инструкций AVX и AES.

Есть в продаже модели с литерами «Т» и «S» в названии. Эти чипы работают на пониженных частотах. Их TDP не превышает заявленных производителем 35 Вт в первом случае и 65 Вт — во втором. Частота Core i3-4160T составляет всего 3,1 ГГц, у «простого» Core i3-4160 — 3,6 ГГц. Процессор Core i5-4590S подходит в том числе и для установки во встраиваемые системы. Об этом и свидетельствует дополнительная маркировка. В стационарные ПК за те же деньги лучше ставить «обыкновенные» чипы с повышенными частотами.

В таблицу я не внес процессоры поколения Broadwell, которые также совместимы с платформой LGA1150. Во-первых, есть всего две модели, устанавливаемые в гнездо: Core i7-5775C и Core i5-5675C. Они стоят заметно дороже Haswell-аналогов, работают на низких частотах, но все — с разблокированным множителем. Конечную цену продукта определяет количество устройств в партии и сложность производства. Broadwell — сложный процессор. Он получил кэш четвертого уровня в виде отдельного чипа и мощную графику Iris Pro 6200. Эти модели заинтересуют в основном тех, кто хочет получить производительный ПК в сверхкомпактном корпусе.

Самой мощной встроенной графикой отныне обладают решения Intel

Напомню, что Broadwell — это, грубо говоря, тот же Haswell, но переведенный на новый техпроцесс, то есть на 14 нанометров. Такова общая концепция выпуска процессоров Intel «тик-так».

Линейка процессоров Skylake формируется тем же способом, что и Haswell. Чипы под LGA1150 и LGA1151 схожи даже в плане функциональности. На момент публикации статьи Intel презентовала лишь линейки Pentium и Core i3/i5/i7. Пока без Celeron’ов.

Платформа

Архитектура, техпроцесс

Skylake, 14 нм

Поддерживаемая оперативная память

Поддерживаются чипсетами

B150, C232, C236, H110, H170, Q170, Z170

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

2900-3600 МГц

3200-3900 МГц

2200-3500 МГц

2800-4000 МГц

Поддержка Turbo Boost

Поддержка Hyper-threading

Встроенная графика

HD Graphics 530, 24 исполнительных устройства, 1000 МГц

HD Graphics 530, 24 исполнительных устройства, 1050 МГц

HD Graphics 530, 24 исполнительных устройства, 950-1150 МГц

HD Graphics 530, 24 исполнительных устройства, 1150 МГц

Уровень TDP

Core i5 и Core i7 (и Haswell, и Broadwell) поддерживают функцию автоматического разгона Turbo Boost. Принцип ее работы схож с Turbo Core от AMD. Серии Core i3 и Core i7 поддерживают технологию Hyper-threading: на каждое физическое ядро приходится по дополнительному виртуальному потоку. Производительность чипов за счет этого не увеличивается вдвое, но в многопоточных программах прирост однозначно есть. И даже в современных процессорозависимых играх.

Skylake — самые актуальные и современные решения ближайшие пару лет

Pentium для LGA1151 наконец-то получили поддержку набора инструкций AES-NI. С ее помощью заметно ускоряется криптография. Поддержки AVX все еще нет. Из общего строя «пней» выбивается модель Pentium G4400. Она имеет чуть увеличенный TDP (54 Вт), но при этом медленное (в сравнении с HD Graphics 530) графическое ядро HD Graphics 510.

Все чипы Skylake имеют двойной контроллер памяти. Пользователь самостоятельно решит, какую материнскую плату ему выбрать: . Контроллер памяти любого Skylake рассчитан на работу либо с DDR3L-1333/1600, либо с DDR4-1866/2133.

Флагманские чипы Haswell-E представлены тремя моделями. И все. Процессоры построены на архитектуре Haswell, но работают только с оперативной памятью DDR4 в 4-канальном режиме. Весь сок Haswell-E — в большом количестве очень быстрых ядер: от 6 до 8.

Платформа

Архитектура, техпроцесс

Haswell, 22 нм

Поддерживаемая оперативная память

Поддерживаются чипсетами

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

Поддержка Turbo Boost

Поддержка Hyper-threading

Встроенная графика

Уровень TDP

Core i7-5960X — это самый быстрый настольный процессор на сегодняшний день. Восемь ядер и 16 потоков! Летом Intel представит 10-ядерный чип Broadwell-E, совместимый с платформой LGA2011-v3, тогда Core i7-5960X и сложит свои полномочия. Впрочем, наибольший интерес вызывает модель Core i7-5820K, так как стоит относительно небольшие 390 долларов США. Разница между этим чипом и Core i7-5930K заключается не только в частоте, но и в количестве встроенных линий PCI Express 3.0. У младшей модели 28 линий, у старшей — 40. Этот нюанс не стоит того, чтобы переплачивать 190 долларов США.

Core i7-5960X — самый быстрый настольный процессор современности

Между Core i7-4790K, Core i7-6700K и Core i7-5820K — флагманами каждой из платформ — я выбираю именно 6-ядерник. Плюсы очевидны. Минус один: сборка компьютера на LGA2011-v3 влетит в копеечку, ведь дешевых материнских плат для чипов Haswell-E не существует.

Выбирая между Haswell (LGA1150) и Skylake (LGA1151), возникнут вопросы и разночтения. Платформа для 14-нанометровых процессоров современнее, но ничего кардинального логика Z170 Express (и младшие аналоги) не привносит. Использование памяти DDR4 на данном этапе развития стандарта не дает никаких преференций. Как мы уже выяснили, архитектура Skylake быстрее Haswell, но сами 14-нанометровые чипы стоят дороже. В итоге и возникают ситуации, когда при идентичной цене Core i5-6400 в целом не быстрее Core i5-4460. Или вот еще пример: Core i7-6700K всерьез не опережает Сore i7-4790K, но стоит приблизительно на 5000 рублей дороже. А еще учтем, что на сегодняшний день комплект памяти DDR4 и материнская плата Z170/H170/B150 Express стоят дороже DDR3 и Z97/H97/B85 Express соответственно.

У Skylake есть плюсы «бытового» характера. Эти чипы холоднее Haswell. Неразгоняемые модели Core i5/i7 потребляют/выделяют гораздо меньше энергии. Получается, что со Skylake пользователю нет необходимости вкладываться в покупку более качественной системы охлаждения, да и компьютер в целом работает тише.

Надо сэкономить на покупке процессора, памяти и матплаты? Берем Haswell. Есть средства — берем Skylake

Как показывает практика, чипы Skylake лучше разгоняются. Оверклоку подвергаются не только модели с литерой «К» в названии (как у Haswell), но и все остальные — за счет увеличения частоты тактового генератора. , но это первое поколение чипов Core (со времени появления Sandy Bridge), которому разрешен разгон не К-процессоров по шине.

Процессоры Skylake и Haswell подойдут для сборки игровых компьютеров с использованием не более двух видеокарт. У этих чипов всего 16 линий PCI Express 3.0, которые с использованием чипсетов Z170/Z97 делятся пополам. Хочется большего? Тогда лучше использовать платформу LGA2011-v3.

Что лучше: AMD или Intel?

Тяжело односложно ответить на этот вопрос. С одной стороны, многие тесты демонстрируют, что решения Intel обладают более производительной архитектурой. На протяжении многих лет различные поколения Core опережали модульную архитектуру Bulldozer. Я уже сравнивал топовый 8-ядерный Core i7 с топовым 8-ядерным FX-9000. В некоторых приложениях чип Intel оказывается вдвое быстрее процессора AMD. С другой стороны, «красные» не претендуют на большее. Вот и получается определенный сдвиг: флагманы AMD конкурируют с середняками Intel. Это видно в том числе и по ценам. К плюсам процессоров Intel отнесем меньший уровень TDP, а также более современные (читай — функциональные) платформы.

Предлагаю ознакомиться с таблицей соответствия производительности центральных процессоров AMD и Intel. Соответствие упрощенное, так как для более детального сравнения надо отдельно изучать характеристики конкретных моделей.

Соответствие производительности процессоров AMD и Intel

Core i7-5000 (LGA2011-v3)

Core i7 (LGA1150/1151)

FX-4000, A8/A10, Athlon X4

Pentium, Celeron

А теперь предлагаю список самых интересных (по моему мнению) моделей центральных процессоров, из которых при желании всегда можно вытянуть больше производительности.

Бюджетные процессоры

Intel Pentium G3258

Intel Core i3-6100

Архитектура, техпроцесс

Haswell, 22 нм

Piledriver, 32 нм

Skylake, 14 нм

Piledriver, 32 нм

Платформа

Поддерживаемая оперативная память

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

Встроенная графика

HD Graphics, 1100 МГц

HD Graphics 530, 1050 МГц

Уровень TDP

Цена на момент публикации

Запрос цены: Intel Pentium G3258 590114 1

Запрос цены: AMD FX-4300 590120 1

Запрос цены: Intel Core i3-6100 590114 1

Запрос цены: AMD FX-8320E 590120 1

  • Intel Pentium G3258 . Я человек простой. Вижу процессор с разблокированным множителем — разгоняю. Модель G3258 появилась на свет в честь 20-летия бренда Pentium. И инженеры Intel оснастили ее разблокированным множителем. В итоге этот «пенек» совершенно спокойно разгоняется до 4,5-4,7 ГГц. Там, где не требуется многопоточность, получается очень быстро.
  • AMD FX-4300 . Самый дешевый 4-ядерный процессор с разблокированным множителем. Такого чипа достаточно, чтобы собрать бюджетный игровой компьютер. Скажем, .
  • Intel Core i3-6100 . Очень быстрые два ядра на архитектуре Skylake. Поддержка Hyper-threading пригодится в многопоточных приложениях и современных играх. При желании и грамотном подборе комплектующих эти 3,7 ГГц спокойно превращаются в 4,7 ГГц. Приобретать для такого оверклока не потребуется.
  • AMD FX-8320 E . Самый дешевый 8-ядерный процессор AMD. Пашет на низкой частоте 3,2 ГГц, однако я полностью согласен с мнением, что для чипов FX заявленная скорость работы не имеет особого значения, если пользователь владеет разгоном. Конкретно FX-8320E при определенных обстоятельствах запустится на частоте 4,5 ГГц. Быть может, и выше.

Средний ценовой диапазон

Intel Core i5-6400

Intel Core i5-6600K

Архитектура, техпроцесс

Piledriver, 32 нм

Skylake, 14 нм

Skylake, 14 нм

Платформа

Поддерживаемая оперативная память

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

Встроенная графика

HD Graphics 530, 950 МГц

HD Graphics 530, 1150 МГц

Уровень TDP

Цена на момент публикации

Запрос цены: AMD FX-8350 590120 1

Запрос цены: Intel Core i5-6400 590114 1

Запрос цены: Intel Core i5-6600K 590114 1

  • AMD FX-8350 . Для тех, кто разгоном по каким-либо причинам пользоваться не намерен. Модель из коробки работает с частотой 4 ГГц. Брать более дорогую модель (FX-8370 или же FX-9000) смысла не вижу.
  • Intel Core i5-6400 . Самый дешевый 4-ядерный процессор на архитектуре Skylake. Расстраивает низкая тактовая частота в 2,7 ГГц, но я уже писал об этом. Впрочем, этот параметр всегда можно подтянуть — где-то до 4-4,2 ГГц. В играх пригодится. В приложениях, использующих инструкции AVX, сделаем только хуже.
  • Intel Core i5-6600 K . Высокая частота, разблокированный множитель. Золотая середина для геймеров и оверклокеров.

Флагманские процессоры

Intel Core i7-6700K

Intel Core i7-5820K

Архитектура, техпроцесс

Skylake, 14 нм

Haswell, 22 нм

Платформа

Поддерживаемая оперативная память

Количество ядер (потоков)

Объем кэша третьего уровня

Тактовая частота

Встроенная графика

HD Graphics 530, 1150 МГц

Уровень TDP

Цена на момент публикации

Запрос цены: Intel Core i7-6700K 590114 1

Запрос цены: Intel Core i7-5820K 590114 1

  • Intel Core i7-6700K . Процессор Core i7-4790K тоже работает на частоте 4 ГГц и при этом стоит заметно дешевле, но он очень горячий. Спасибо за это как особенностям архитектуры, так и . Его сложно разогнать без использования суперкулера или мощной системы водяного охлаждения. Core i7-6700K заметно холоднее, и разгоняется лучше.
  • Intel Core i7-5820 K . Здесь все очень просто. За относительно умеренную цену (в сравнении с другими Haswell-E) получаем очень быстрые шесть ядер.

В заключение

По статистике центральный процессор, да и вообще платформу компьютера, обновляют реже остальных комплектующих в компьютере. Заменить видеокарту просто. Добавить в пустующие слоты оперативной памяти просто. Установить еще один накопитель в систему просто. А вот до апгрейда процессора, как правило, руки не доходят. Именно поэтому необходимо с первого раза угадать с чипом и не экономить на нем. Чтобы жить впоследствии припеваючи. Лет пять так точно (пользуясь случаем, передаю пламенный привет всем владельцам Sandy Bridge!). Ведь процессоры в последнее время в плане производительности прогрессируют крайне медленно.

При выборе процессора от компании Intel встает вопрос: а какой чип от этой корпорации выбрать? У процессоров есть множество характеристик и параметров, которые влияют на их производительность. И в соответствии с ней и некоторыми особенностями микроархитектуры производитель дает соответствующее название. Нашей задачей является освещение этого вопроса. В этой статье вы узнаете, что именно означают названия процессоров Intel, а также узнаете про микроархитектуры чипов от этой компании.

Указание

Надо заранее отметить, что здесь не будут рассматриваться решения раньше 2012 года, так как технологии идут быстрыми темпами и эти чипы имеют слишком малую производительность при большом энергопотреблении, а также их трудно купить в новом состоянии. Также здесь не будут рассмотрены серверные решения, так как они имеют специфичную сферу применения и не предназначены для потребительского рынка.

Внимание номенклатура изложенная ниже может оказаться недействительной для процессоров старее, чем обозначенный выше срок.

А также при возникновении трудностей можете посетить сайт . И прочесть вот эту статью, где рассказано про . А если хотите узнать про интегрированную графику от Intel, то вам .

Тик-Так

У Intel особая стратегия выпуска своих «камней», называющаяся Тик-Так (Tick-Tock). Она заключается в ежегодных последовательных улучшениях.

  • Тик означает смену микроархитектуры, которая ведет к смене сокета, улучшению производительности и оптимизации энергопотребления.
  • Так означает , что ведет к уменьшению энергопотребления, возможности расположения большего числа транзисторов на чипе, возможному поднятию частот и увеличению стоимости.

Вот так выглядит данная стратегия у десктопных и ноутбучных моделей:

МОДЕЛЬ «ТИК-ТАК» У ДЕСКТОПНЫХ ПРОЦЕССОРОВ
МИКРОАРХИТЕКРУРА ЭТАП ВЫХОД ТЕХПРОЦЕСС
Nehalem Так 2009 45 нм
Westmere Тик 2010 32 нм
Sandy Bridge Так 2011 32 нм
Ivy Bridge Тик 2012 22 нм
Haswell Так 2013 22 нм
Broadwell Тик 2014 14 нм
Skylake Так 2015 14 нм
Kaby Lake Так+ 2016 14 нм

А вот у маломощных решений (смартфоны, планшеты, нетбуки, неттопы) платформы выглядят следующим образом:

МИКРОАРХИТЕКТУРЫ МОБИЛЬНЫЙ ПРОЦЕССОРОВ
КАТЕГОРИЯ ПЛАТФОРМА ЯДРО ТЕХПРОЦЕСС
Нетбуки/Неттопы/Ноутбуки Braswell Airmont 14 нм
Bay Trail-D/M Silvermont 22 нм
Топовые планшеты Willow Trail Goldmont 14 нм
Cherry Trail Airmont 14 нм
Bay Tral-T Silvermont 22 нм
Clower Trail Satwell 32 нм
Топовые/средние смартфоны/планшеты Morganfield Goldmont 14 нм
Moorefield Silvermont 22 нм
Merrifield Silvermont 22 нм
Clower Trail+ Satwell 32 нм
Medfield Satwell 32 нм
Средние/бюджетные смартфоны/планшеты Binghamton Airmont 14 нм
Riverton Airmont 14 нм
Slayton Silvermont 22 нм

Надо отметить, что Bay Trail-D сделана для десктопов: Pentium и Celeron с индексом J. А Bay Trail-M для – это мобильное решение и также будет обозначаться среди Pentium и Celeron своей буквой – N.

Судя по последним тенденциям компании, сама производительность прогрессирует достаточно медленно, в то время как энергоэффективность (производительность на единицу потребленной энергии) растет год от года, того и гляди скоро в ноутбуках будут такие же мощные процессоры, как и на больших ПК (хотя такие представители есть и сейчас).