Возможности и преимущества сетевых технологий. сетевой интернет домен маршрутизация. Достоинства одноранговых сетей

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, «технология сквозной маршрутизации», «технология создания защищенного канала», «технология IP-сетей».

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями , имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т. п., - и соединить их в соответствии с требованиями стандарта на данную технологию.

Создание стандартных технологий локальных сетей

В середине 80-х годов положение дел в локальных сетях стало кардинально меняться. Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей - с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Стандартные сетевые технологии превратили процесс построения локальной сети из искусства в рутинную работу. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например, NetWare. После этого сеть начинала работать и присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

Локальные сети в сравнении с глобальными сетями внесли много нового в способы организации работы пользователей. Доступ к разделяемым ресурсам стал гораздо удобнее - пользователь мог просто просматривать списки имеющихся ресурсов, а не запоминать их идентификаторы или имена. После соединения с удаленным ресурсом можно было работать с ним с помощью уже знакомых пользователю по работе с локальными ресурсами команд. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей, которым совершенно не нужно было изучать специальные (и достаточно сложные) команды для сетевой работы. А возможность реализовать все эти удобства разработчики локальных сетей получили в результате появления качественных кабельных линий связи, на которых даже сетевые адаптеры первого поколения обеспечивали скорость передачи данных до 10 Мбит/с.

Конечно, о таких скоростях разработчики глобальных сетей не могли даже мечтать - им приходилось пользоваться теми каналами связи, которые были в наличии, так как прокладка новых кабельных систем для вычислительных сетей протяженностью в тысячи километров потребовала бы колоссальных капитальных вложений. А «под рукой» были только телефонные каналы связи, плохо приспособленные для высокоскоростной передачи дискретных данных - скорость в 1200 бит/с была для них хорошим достижением. Поэтому экономное расходование пропускной способности каналов связи часто являлось основным критерием эффективности методов передачи данных в глобальных сетях. В этих условиях различные процедуры прозрачного доступа к удаленным ресурсам, стандартные для локальных сетей, для глобальных сетей долго оставались непозволительной роскошью.

Современные тенденции

Сегодня вычислительные сети продолжают развиваться, причем достаточно быстро. Разрыв между локальными и глобальными сетями постоянно сокращается во многом из-за появления высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам локальных сетей. В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом количестве демонстрирует самая популярная глобальная сеть - Internet.

Изменяются и локальные сети. Вместо соединяющего компьютеры пассивного кабеля в них в большом количестве появилось разнообразное коммуникационное оборудование - коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру. Возродился интерес к крупным компьютерам - в основном из-за того, что после спада эйфории по поводу легкости работы с персональными компьютерами выяснилось, что системы, состоящие из сотен серверов, обслуживать сложнее, чем несколько больших компьютеров. Поэтому на новом витке эволюционной спирали мэйнфреймы стали возвращаться в корпоративные вычислительные системы, но уже как полноправные сетевые узлы, поддерживающие Ethernet или Token Ring, а также стек протоколов TCP/IP, ставший благодаря Internet сетевым стандартом де-факто.

Проявилась еще одна очень важная тенденция, затрагивающая в равной степени как локальные, так и глобальные сети. В них стала обрабатываться несвойственная ранее вычислительным сетям информация - голос, видеоизображения, рисунки. Это потребовало внесения изменений в работу протоколов, сетевых операционных систем и коммуникационного оборудования. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных - задержки обычно приводят к искажению такой информации в конечных узлах сети. Так как традиционные службы вычислительных сетей - такие как передача файлов или электронная почта - создают малочувствительный к задержкам трафик и все элементы сетей разрабатывались в расчете на него, то появление трафика реального времени привело к большим проблемам.

Сегодня эти проблемы решаются различными способами, в том числе и с помощью специально рассчитанной на передачу различных типов трафика технологии АТМ, Однако, несмотря на значительные усилия, предпринимаемые в этом направлении, до приемлемого решения проблемы пока далеко, и в этой области предстоит еще много сделать, чтобы достичь заветной цели - слияния технологий не только локальных и глобальных сетей, но и технологий любых информационных сетей - вычислительных, телефонных, телевизионных и т. п. Хотя сегодня эта идея многим кажется утопией, серьезные специалисты считают, что предпосылки для такого синтеза уже существуют, и их мнения расходятся только в оценке примерных сроков такого объединения - называются сроки от 10 до 25 лет. Причем считается, что основой для объединения послужит технология коммутации пакетов, применяемая сегодня в вычислительных сетях, а не технология коммутации каналов, используемая в телефонии, что, наверно, должно повысить интерес к сетям этого типа.

  • Tutorial

Всем привет. На днях возникла идея написать статьи про основы компьютерных сетей, разобрать работу самых важных протоколов и как строятся сети простым языком. Заинтересовавшихся приглашаю под кат.


Немного оффтопа: Приблизительно месяц назад сдал экзамен CCNA (на 980/1000 баллов) и осталось много материала за год моей подготовки и обучения. Учился я сначала в академии Cisco около 7 месяцев, а оставшееся время вел конспекты по всем темам, которые были мною изучены. Также консультировал многих ребят в области сетевых технологий и заметил, что многие наступают на одни и те же грабли, в виде пробелов по каким-то ключевым темам. На днях пару ребят попросили меня объяснить, что такое сети и как с ними работать. В связи с этим решил максимально подробно и простым языком описать самые ключевые и важные вещи. Статьи будут полезны новичкам, которые только встали на путь изучения. Но, возможно, и бывалые сисадмины подчеркнут из этого что-то полезное. Так как я буду идти по программе CCNA, это будет очень полезно тем людям, которые готовятся к сдаче. Можете держать статьи в виде шпаргалок и периодически их просматривать. Я во время обучения делал конспекты по книгам и периодически читал их, чтобы освежать знания.

Вообще хочу дать всем начинающим совет. Моей первой серьезной книгой, была книга Олиферов «Компьютерные сети». И мне было очень тяжело читать ее. Не скажу, что все было тяжело. Но моменты, где детально разбиралось, как работает MPLS или Ethernet операторского класса, вводило в ступор. Я читал одну главу по несколько часов и все равно многое оставалось загадкой. Если вы понимаете, что какие то термины никак не хотят лезть в голову, пропустите их и читайте дальше, но ни в коем случае не отбрасывайте книгу полностью. Это не роман или эпос, где важно читать по главам, чтобы понять сюжет. Пройдет время и то, что раньше было непонятным, в итоге станет ясно. Здесь прокачивается «книжный скилл». Каждая следующая книга, читается легче предыдущей книги. К примеру, после прочтения Олиферов «Компьютерные сети», читать Таненбаума «Компьютерные сети» легче в несколько раз и наоборот. Потому что новых понятий встречается меньше. Поэтому мой совет: не бойтесь читать книги. Ваши усилия в будущем принесут плоды. Заканчиваю разглагольствование и приступаю к написанию статьи.

Вот сами темы

1) Основные сетевые термины, сетевая модель OSI и стек протоколов TCP/IP.
2) Протоколы верхнего уровня.
3) Протоколы нижних уровней (транспортного, сетевого и канального).
4) Сетевые устройства и виды применяемых кабелей.
5) Понятие IP адресации, масок подсетей и их расчет.
6) Понятие VLAN, Trunk и протоколы VTP и DTP.
7) Протокол связующего дерева: STP.
8) Протокол агрегирования каналов: Etherchannel.
9) Маршрутизация: статическая и динамическая на примере RIP, OSPF и EIGRP.
10) Трансляция сетевых адресов: NAT и PAT.
11) Протоколы резервирования первого перехода: FHRP.
12) Безопасность компьютерных сетей и виртуальные частные сети: VPN.
13) Глобальные сети и используемые протоколы: PPP, HDLC, Frame Relay.
14) Введение в IPv6, конфигурация и маршрутизация.
15) Сетевое управление и мониторинг сети.

P.S. Возможно, со временем список дополнится.


Итак, начнем с основных сетевых терминов.

Что такое сеть? Это совокупность устройств и систем, которые подключены друг к другу (логически или физически) и общающихся между собой. Сюда можно отнести сервера, компьютеры, телефоны, маршрутизаторы и так далее. Размер этой сети может достигать размера Интернета, а может состоять всего из двух устройств, соединенных между собой кабелем. Чтобы не было каши, разделим компоненты сети на группы:

1) Оконечные узлы: Устройства, которые передают и/или принимают какие-либо данные. Это могут быть компьютеры, телефоны, сервера, какие-то терминалы или тонкие клиенты, телевизоры.

2) Промежуточные устройства: Это устройства, которые соединяют оконечные узлы между собой. Сюда можно отнести коммутаторы, концентраторы, модемы, маршрутизаторы, точки доступа Wi-Fi.

3) Сетевые среды: Это те среды, в которых происходит непосредственная передача данных. Сюда относятся кабели, сетевые карточки, различного рода коннекторы, воздушная среда передачи. Если это медный кабель, то передача данных осуществляется при помощи электрических сигналов. У оптоволоконных кабелей, при помощи световых импульсов. Ну и у беспроводных устройств, при помощи радиоволн.

Посмотрим все это на картинке:

На данный момент надо просто понимать отличие. Детальные отличия будут разобраны позже.

Теперь, на мой взгляд, главный вопрос: Для чего мы используем сети? Ответов на этот вопрос много, но я освещу самые популярные, которые используются в повседневной жизни:

1) Приложения: При помощи приложений отправляем разные данные между устройствами, открываем доступ к общим ресурсам. Это могут быть как консольные приложения, так и приложения с графическим интерфейсом.

2) Сетевые ресурсы: Это сетевые принтеры, которыми, к примеру, пользуются в офисе или сетевые камеры, которые просматривает охрана, находясь в удаленной местности.

3) Хранилище: Используя сервер или рабочую станцию, подключенную к сети, создается хранилище доступное для других. Многие люди выкладывают туда свои файлы, видео, картинки и открывают общий доступ к ним для других пользователей. Пример, который на ходу приходит в голову, - это google диск, яндекс диск и тому подобные сервисы.

4) Резервное копирование: Часто, в крупных компаниях, используют центральный сервер, куда все компьютеры копируют важные файлы для резервной копии. Это нужно для последующего восстановления данных, если оригинал удалился или повредился. Методов копирования огромное количество: с предварительным сжатием, кодированием и так далее.

5) VoIP: Телефония, работающая по протоколу IP. Применяется она сейчас повсеместно, так как проще, дешевле традиционной телефонии и с каждым годом вытесняет ее.

Из всего списка, чаще всего многие работали именно с приложениями. Поэтому разберем их более подробно. Я старательно буду выбирать только те приложения, которые как-то связаны с сетью. Поэтому приложения типа калькулятора или блокнота, во внимание не беру.

1) Загрузчики. Это файловые менеджеры, работающие по протоколу FTP, TFTP. Банальный пример - это скачивание фильма, музыки, картинок с файлообменников или иных источников. К этой категории еще можно отнести резервное копирование, которое автоматически делает сервер каждую ночь. То есть это встроенные или сторонние программы и утилиты, которые выполняют копирование и скачивание. Данный вид приложений не требует прямого человеческого вмешательства. Достаточно указать место, куда сохранить и скачивание само начнется и закончится.

Скорость скачивания зависит от пропускной способности. Для данного типа приложений это не совсем критично. Если, например, файл будет скачиваться не минуту, а 10, то тут только вопрос времени, и на целостности файла это никак не скажется. Сложности могут возникнуть только когда нам надо за пару часов сделать резервную копию системы, а из-за плохого канала и, соответственно, низкой пропускной способности, это занимает несколько дней. Ниже приведены описания самых популярных протоколов данной группы:

FTP- это стандартный протокол передачи данных с установлением соединения. Работает по протоколу TCP (этот протокол в дальнейшем будет подробно рассмотрен). Стандартный номер порта 21. Чаще всего используется для загрузки сайта на веб-хостинг и выгрузки его. Самым популярным приложением, работающим по этому протоколу - это Filezilla. Вот так выглядит само приложение:


TFTP- это упрощенная версия протокола FTP, которая работает без установления соединения, по протоколу UDP. Применяется для загрузки образа бездисковыми рабочими станциями. Особенно широко используется устройствами Cisco для той же загрузки образа и резервных копий.

Интерактивные приложения. Приложения, позволяющие осуществить интерактивный обмен. Например, модель «человек-человек». Когда два человека, при помощи интерактивных приложений, общаются между собой или ведут общую работу. Сюда относится: ICQ, электронная почта, форум, на котором несколько экспертов помогают людям в решении вопросов. Или модель «человек-машина». Когда человек общается непосредственно с компьютером. Это может быть удаленная настройка базы, конфигурация сетевого устройства. Здесь, в отличие от загрузчиков, важно постоянное вмешательство человека. То есть, как минимум, один человек выступает инициатором. Пропускная способность уже более чувствительна к задержкам, чем приложения-загрузчики. Например, при удаленной конфигурации сетевого устройства, будет тяжело его настраивать, если отклик от команды будет в 30 секунд.

Приложения в реальном времени. Приложения, позволяющие передавать информацию в реальном времени. Как раз к этой группе относится IP-телефония, системы потокового вещания, видеоконференции. Самые чувствительные к задержкам и пропускной способности приложения. Представьте, что вы разговариваете по телефону и то, что вы говорите, собеседник услышит через 2 секунды и наоборот, вы от собеседника с таким же интервалом. Такое общение еще и приведет к тому, что голоса будут пропадать и разговор будет трудноразличимым, а в видеоконференция превратится в кашу. В среднем, задержка не должна превышать 300 мс. К данной категории можно отнести Skype, Lync, Viber (когда совершаем звонок).

Теперь поговорим о такой важной вещи, как топология. Она делится на 2 большие категории: физическая и логическая . Очень важно понимать их разницу. Итак, физическая топология - это как наша сеть выглядит. Где находятся узлы, какие сетевые промежуточные устройства используются и где они стоят, какие сетевые кабели используются, как они протянуты и в какой порт воткнуты. Логическая топология - это каким путем будут идти пакеты в нашей физической топологии. То есть физическая - это как мы расположили устройства, а логическая - это через какие устройства будут проходить пакеты.

Теперь посмотрим и разберем виды топологии:

1) Топология с общей шиной (англ. Bus Topology)


Одна из первых физических топологий. Суть состояла в том, что к одному длинному кабелю подсоединяли все устройства и организовывали локальную сеть. На концах кабеля требовались терминаторы. Как правило - это было сопротивление на 50 Ом, которое использовалось для того, чтобы сигнал не отражался в кабеле. Преимущество ее было только в простоте установки. С точки зрения работоспособности была крайне не устойчивой. Если где-то в кабеле происходил разрыв, то вся сеть оставалась парализованной, до замены кабеля.

2) Кольцевая топология (англ. Ring Topology)


В данной топологии каждое устройство подключается к 2-ум соседним. Создавая, таким образом, кольцо. Здесь логика такова, что с одного конца компьютер только принимает, а с другого только отправляет. То есть, получается передача по кольцу и следующий компьютер играет роль ретранслятора сигнала. За счет этого нужда в терминаторах отпала. Соответственно, если где-то кабель повреждался, кольцо размыкалось и сеть становилась не работоспособной. Для повышения отказоустойчивости, применяют двойное кольцо, то есть в каждое устройство приходит два кабеля, а не один. Соответственно, при отказе одного кабеля, остается работать резервный.

3) Топология звезда (англ. Star Topology)


Все устройства подключаются к центральному узлу, который уже является ретранслятором. В наше время данная модель используется в локальных сетях, когда к одному коммутатору подключаются несколько устройств, и он является посредником в передаче. Здесь отказоустойчивость значительно выше, чем в предыдущих двух. При обрыве, какого либо кабеля, выпадает из сети только одно устройство. Все остальные продолжают спокойно работать. Однако если откажет центральное звено, сеть станет неработоспособной.

4)Полносвязная топология (англ. Full-Mesh Topology)


Все устройства связаны напрямую друг с другом. То есть с каждого на каждый. Данная модель является, пожалуй, самой отказоустойчивой, так как не зависит от других. Но строить сети на такой модели сложно и дорого. Так как в сети, в которой минимум 1000 компьютеров, придется подключать 1000 кабелей на каждый компьютер.

5)Неполносвязная топология (англ. Partial-Mesh Topology)


Как правило, вариантов ее несколько. Она похожа по строению на полносвязную топологию. Однако соединение построено не с каждого на каждый, а через дополнительные узлы. То есть узел A, связан напрямую только с узлом B, а узел B связан и с узлом A, и с узлом C. Так вот, чтобы узлу A отправить сообщение узлу C, ему надо отправить сначала узлу B, а узел B в свою очередь отправит это сообщение узлу C. В принципе по этой топологии работают маршрутизаторы. Приведу пример из домашней сети. Когда вы из дома выходите в Интернет, у вас нет прямого кабеля до всех узлов, и вы отправляете данные своему провайдеру, а он уже знает куда эти данные нужно отправить.

6) Смешанная топология (англ. Hybrid Topology)


Самая популярная топология, которая объединила все топологии выше в себя. Представляет собой древовидную структуру, которая объединяет все топологии. Одна из самых отказоустойчивых топологий, так как если у двух площадок произойдет обрыв, то парализована будет связь только между ними, а все остальные объединенные площадки будут работать безотказно. На сегодняшний день, данная топология используется во всех средних и крупных компаниях.

И последнее, что осталось разобрать - это сетевые модели. На этапе зарождения компьютеров, у сетей не было единых стандартов. Каждый вендор использовал свои проприетарные решения, которые не работали с технологиями других вендоров. Конечно, оставлять так было нельзя и нужно было придумывать общее решение. Эту задачу взвалила на себя международная организация по стандартизации (ISO - International Organization for Standartization). Они изучали многие, применяемые на то время, модели и в результате придумали модель OSI , релиз которой состоялся в 1984 году. Проблема ее была только в том, что ее разрабатывали около 7 лет. Пока специалисты спорили, как ее лучше сделать, другие модели модернизировались и набирали обороты. В настоящее время модель OSI не используют. Она применяется только в качестве обучения сетям. Мое личное мнение, что модель OSI должен знать каждый уважающий себя админ как таблицу умножения. Хоть ее и не применяют в том виде, в каком она есть, принципы работы у всех моделей схожи с ней.

Состоит она из 7 уровней и каждый уровень выполняет определенную ему роль и задачи. Разберем, что делает каждый уровень снизу вверх:

1) Физический уровень (Physical Layer): определяет метод передачи данных, какая среда используется (передача электрических сигналов, световых импульсов или радиоэфир), уровень напряжения, метод кодирования двоичных сигналов.

2) Канальный уровень (Data Link Layer): он берет на себя задачу адресации в пределах локальной сети, обнаруживает ошибки, проверяет целостность данных. Если слышали про MAC-адреса и протокол «Ethernet», то они располагаются на этом уровне.

3) Сетевой уровень (Network Layer): этот уровень берет на себя объединения участков сети и выбор оптимального пути (т.е. маршрутизация). Каждое сетевое устройство должно иметь уникальный сетевой адрес в сети. Думаю, многие слышали про протоколы IPv4 и IPv6. Эти протоколы работают на данном уровне.

4) Транспортный уровень (Transport Layer): Этот уровень берет на себя функцию транспорта. К примеру, когда вы скачиваете файл с Интернета, файл в виде сегментов отправляется на Ваш компьютер. Также здесь вводятся понятия портов, которые нужны для указания назначения к конкретной службе. На этом уровне работают протоколы TCP (с установлением соединения) и UDP (без установления соединения).

5) Сеансовый уровень (Session Layer): Роль этого уровня в установлении, управлении и разрыве соединения между двумя хостами. К примеру, когда открываете страницу на веб-сервере, то Вы не единственный посетитель на нем. И вот для того, чтобы поддерживать сеансы со всеми пользователями, нужен сеансовый уровень.

6) Уровень представления (Presentation Layer): Он структурирует информацию в читабельный вид для прикладного уровня. Например, многие компьютеры используют таблицу кодировки ASCII для вывода текстовой информации или формат jpeg для вывода графического изображения.

7) Прикладной уровень (Application Layer): Наверное, это самый понятный для всех уровень. Как раз на этом уроне работают привычные для нас приложения - e-mail, браузеры по протоколу HTTP, FTP и остальное.

Самое главное помнить, что нельзя перескакивать с уровня на уровень (Например, с прикладного на канальный, или с физического на транспортный). Весь путь должен проходить строго с верхнего на нижний и с нижнего на верхний. Такие процессы получили название инкапсуляция (с верхнего на нижний) и деинкапсуляция (с нижнего на верхний). Также стоит упомянуть, что на каждом уровне передаваемая информация называется по-разному.

На прикладном, представления и сеансовым уровнях, передаваемая информация обозначается как PDU (Protocol Data Units). На русском еще называют блоки данных, хотя в моем круге их называют просто данные).

Информацию транспортного уровня называют сегментами. Хотя понятие сегменты, применимо только для протокола TCP. Для протокола UDP используется понятие - датаграмма. Но, как правило, на это различие закрывают глаза.
На сетевом уровне называют IP пакеты или просто пакеты.

И на канальном уровне - кадры. С одной стороны это все терминология и она не играет важной роли в том, как вы будете называть передаваемые данные, но для экзамена эти понятия лучше знать. Итак, приведу свой любимый пример, который помог мне, в мое время, разобраться с процессом инкапсуляции и деинкапусуляции:

1) Представим ситуацию, что вы сидите у себя дома за компьютером, а в соседней комнате у вас свой локальный веб-сервер. И вот вам понадобилось скачать файл с него. Вы набираете адрес страницы вашего сайта. Сейчас вы используете протокол HTTP, которые работает на прикладном уровне. Данные упаковываются и спускаются на уровень ниже.

2) Полученные данные прибегают на уровень представления. Здесь эти данные структурируются и приводятся в формат, который сможет быть прочитан на сервере. Запаковывается и спускается ниже.

3) На этом уровне создается сессия между компьютером и сервером.

4) Так как это веб сервер и требуется надежное установление соединения и контроль за принятыми данными, используется протокол TCP. Здесь мы указываем порт, на который будем стучаться и порт источника, чтобы сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял, что мы хотим попасть на веб-сервер (стандартно - это 80 порт), а не на почтовый сервер. Упаковываем и спускаем дальше.

5) Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно, указываем адрес назначения (пусть адрес сервера будет 192.168.1.2) и адрес источника (адрес компьютера 192.168.1.1). Заворачиваем и спускаем дальше.

6) IP пакет спускается вниз и тут вступает в работу канальный уровень. Он добавляет физические адреса источника и назначения, о которых подробно будет расписано в последующей статье. Так как у нас компьютер и сервер в локальной среде, то адресом источника будет являться MAC-адрес компьютера, а адресом назначения MAC-адрес сервера (если бы компьютер и сервер находились в разных сетях, то адресация работала по-другому). Если на верхних уровнях каждый раз добавлялся заголовок, то здесь еще добавляется концевик, который указывает на конец кадра и готовность всех собранных данных к отправке.

7) И уже физический уровень конвертирует полученное в биты и при помощи электрических сигналов (если это витая пара), отправляет на сервер.

Процесс деинкапсуляции аналогичен, но с обратной последовательностью:

1) На физическом уровне принимаются электрические сигналы и конвертируются в понятную битовую последовательность для канального уровня.

2) На канальном уровне проверяется MAC-адрес назначения (ему ли это адресовано). Если да, то проверяется кадр на целостность и отсутствие ошибок, если все прекрасно и данные целы, он передает их вышестоящему уровню.

3) На сетевом уровне проверяется IP адрес назначения. И если он верен, данные поднимаются выше. Не стоит сейчас вдаваться в подробности, почему у нас адресация на канальном и сетевом уровне. Это тема требует особого внимания, и я подробно объясню их различие позже. Главное сейчас понять, как данные упаковываются и распаковываются.

4) На транспортном уровне проверяется порт назначения (не адрес). И по номеру порта, выясняется какому приложению или сервису адресованы данные. У нас это веб-сервер и номер порта - 80.

5) На этом уровне происходит установление сеанса между компьютером и сервером.

6) Уровень представления видит, как все должно быть структурировано и приводит информацию в читабельный вид.

7) И на этом уровне приложения или сервисы понимают, что надо выполнить.

Много было написано про модель OSI. Хотя я постарался быть максимально краток и осветить самое важное. На самом деле про эту модель в Интернете и в книгах написано очень много и подробно, но для новичков и готовящихся к CCNA, этого достаточно. Из вопросов на экзамене по данной модели может быть 2 вопроса. Это правильно расположить уровни и на каком уровне работает определенный протокол.

Как было написано выше, модель OSI в наше время не используется. Пока разрабатывалась эта модель, все большую популярность получал стек протоколов TCP/IP. Он был значительно проще и завоевал быструю популярность.
Вот так этот стек выглядит:


Как видно, он отличается от OSI и даже сменил название некоторых уровней. По сути, принцип у него тот же, что и у OSI. Но только три верхних уровня OSI: прикладной, представления и сеансовый объединены у TCP/IP в один, под названием прикладной. Сетевой уровень сменил название и называется - Интернет. Транспортный остался таким же и с тем же названием. А два нижних уровня OSI: канальный и физический объединены у TCP/IP в один с названием - уровень сетевого доступа. Стек TCP/IP в некоторых источниках обозначают еще как модель DoD (Department of Defence). Как говорит википедия, была разработана Министерством обороны США. Этот вопрос встретился мне на экзамене и до этого я про нее ничего не слышал. Соответственно вопрос: «Как называется сетевой уровень в модели DoD?», ввел меня в ступор. Поэтому знать это полезно.

Было еще несколько сетевых моделей, которые, какое то время держались. Это был стек протоколов IPX/SPX. Использовался с середины 80-х годов и продержался до конца 90-х, где его вытеснила TCP/IP. Был реализован компанией Novell и являлся модернизированной версией стека протоколов Xerox Network Services компании Xerox. Использовался в локальных сетях долгое время. Впервые IPX/SPX я увидел в игре «Казаки». При выборе сетевой игры, там предлагалось несколько стеков на выбор. И хоть выпуск этой игры был, где то в 2001 году, это говорило о том, что IPX/SPX еще встречался в локальных сетях.

Еще один стек, который стоит упомянуть - это AppleTalk. Как ясно из названия, был придуман компанией Apple. Создан был в том же году, в котором состоялся релиз модели OSI, то есть в 1984 году. Продержался он совсем недолго и Apple решила использовать вместо него TCP/IP.

Также хочу подчеркнуть одну важную вещь. Token Ring и FDDI - не сетевые модели! Token Ring - это протокол канального уровня, а FDDI это стандарт передачи данных, который как раз основывается на протоколе Token Ring. Это не самая важная информация, так как эти понятия сейчас не встретишь. Но главное помнить о том, что это не сетевые модели.

Вот и подошла к концу статья по первой теме. Хоть и поверхностно, но было рассмотрено много понятий. Самые ключевые будут разобраны подробнее в следующих статьях. Надеюсь теперь сети перестанут казаться чем то невозможным и страшным, а читать умные книги будет легче). Если я что-то забыл упомянуть, возникли дополнительные вопросы или у кого есть, что дополнить к этой статье, оставляйте комментарии, либо спрашивайте лично. Спасибо за прочтение. Буду готовить следующую тему.

Добавить метки

Если компьютеры работают независимо друг от друга, то приложения и ресурсы (например, принтеры или сканеры) придется дублировать для каждого из них. Например, если два аналитика хотят работать с таблицей Excel и ежедневно распечатывать результаты своей работы на принтере, оба используемых ими компьютера должны иметь свою копию программы Excel и принтер. Если бы пользователям понадобилось совместно применять свои данные, то эти данные пришлось бы непрерывно переносить между компьютерами при помощи дискет или CD-RW-дисков. А если бы пользователям понадобилось совместно применять свои компьютеры, то каждому из них пришлось бы приложить усилия, чтобы разобраться в другой системе -- ведь в каждой из них имеется своя организация рабочего стола и приложений, своя структура папок и т. д. Короче говоря, это был бы весьма неудобный, неэкономный процесс, который приводил бы к большому количеству ошибок. И чем больше пользователей подключается к этому процессу, тем быстрее наступает момент, когда им становится уже невозможно управлять. Однако, если бы те два ПК из нашего примера были соединены между собой в сеть, оба пользователя смогли бы применять одно приложение Excel, иметь доступ к одним и тем же исходным данным и потом отправлять результаты своей работы на один “общий” принтер, присоединенный к сети (хотя, нужно сказать, что в современных сетях чаще всего каждая рабочая станция имеет свои приложения, например, Excel, а данные использует совместно). Если бы к этой сети добавилось больше пользователей, то все они смогли бы совместно применять Excel, данные и ресурсы одинаковым образом. Другими словами, компьютеры, входящие в сеть, могут совместно использовать:

Документы (записки, электронные таблицы, счета и т. д.);

Электронные почтовые сообщения;

Программное обеспечение по работе с текстом;

Программное обеспечение по сопровождению проектов;

Иллюстрации, фотографии, видео- и аудиофайлы;

Живые аудио- и видеотрансляции;

Принтеры;

Дисководы CD-ROM и другие сменные запоминающие устройства (как, например, Zip-дисководы и Jaz-дисководы);

Жесткие диски.

Поскольку в одной компьютерной сети работает множество компьютеров, более эффективно управлять всей сетью из центральной точки (сетевой администратор, network administrator). Возьмем вышеприведенный пример и предположим, что нашим аналитикам дали новую версию программы Excel. Если их компьютеры не, объединены в сеть, то каждую систему придется модернизировать и проверять по отдельности. Это не так уж и сложно сделать, если систем только две. Но если в компании есть десятки или даже сотни персональных компьютеров, проводить индивидуальную модернизацию каждого из них, естественно, становится дорогим и неэффективным занятием. При наличии компьютерной сети, для того чтобы модернизировать приложение, такую модернизацию достаточно выполнить только один раз на сервере, после чего все рабочие станции данной компьютерной сети смогут сразу же начать использовать обновленное программное обеспечение (ПО). Централизованное администрирование также позволяет из одного места управлять безопасностью компьютерной сети и следить за ее работой.

Но кроме возможности совместного доступа к информации, компьютерные сети дают и другие преимущества. Сеть позволяет сохранять и защищать информацию. Например, очень трудно координировать и управлять процессом резервирования информации при большом количестве независимых друг от друга персональных компьютеров. Системы, организованные в компьютерную сеть, могут автоматически создавать резервные копии файлов в одном центральном месте (например, накопителе на магнитной ленте, подключенном к сетевому серверу). Если информация на каком-либо компьютере оказывается утраченной, ее можно будет легко найти в центральной системе резервирования и восстановить. Кроме того, повышается уровень безопасности данных. Получение доступа к отдельному персональному компьютеру, как правило, означает доступ ко всей информации, содержащейся в этом компьютере. Однако возможности безопасности, которые предоставляет компьютерная сеть, не позволят неавторизованным пользователям получить доступ к важной информации или удалить ее. Например, каждый сетевой пользователь имеет свое регистрационное (“логинное”) имя и пароль, которые дают доступ только лишь к ограниченному числу сетевых ресурсов. Наконец, компьютерные сети являются идеальными средами для общения между пользователями. Вместо того чтобы обмениваться бумажными напоминаниями и записками, электронная почта позволяет пользователям отправлять друг другу письма, отчеты, изображения -- почти все типы файлов. Это также позволяет сэкономить на распечатывании материалов и уменьшить задержки, связанные с доставкой переписки между отделами компании. Электронная почта -- это такой мощный инструмент, что он позволяет пользователям сети Интернет почти мгновенно обмениваться сообщениями, практически независимо от своего местоположения в мире.

Тема 1.3: Открытые системы и модель OSІ

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.5. Базовые технологии или сетевые технологии локальных сетей

1.5.3. Сетевые технологии локальных сетей

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token-Ring, ArcNet, FDDI.

Сетевые технологии локальных сетей IEEE802.3/Ethernet

В настоящее время эта сетевая технология наиболее популярна в мире. Популярность обеспечивается простыми, надежными и недорогими технологиями. В классической локальной сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий).

Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. В локальных сетях Ethernet применяются топологии типа “шина” и типа “пассивная звезда”, а метод доступа CSMA/CD.

Стандарт IEEE802.3 в зависимости от типа среды передачи данных имеет модификации:

  1. 10BASE5 (толстый коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 500м.
  2. 10BASE2 (тонкий коаксиальный кабель) - обеспечивает скорость передачи данных 10 Мбит/с и длину сегмента до 200м.
  3. 10BASE-T (неэкранированная витая пара) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 100м. Общее количество узлов не должно превышать 1024.
  4. 10BASE-F (оптоволоконный кабель) - позволяет создавать сеть по звездной топологии. Расстояние от концентратора до конечного узла до 2000м.

В развитие сетевой технологии Ethernet созданы высокоскоростные варианты: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet. Основная топология, которая используется в локальных сетях Fast Ethernet и Gigabit Ethernet, пассивная звезда.

Сетевая технология Fast Ethernet обеспечивает скорость передачи 100 Мбит/с и имеет три модификации:

  1. 100BASE-T4 - используется неэкранированная витая пара (счетверенная витая пара). Расстояние от концентратора до конечного узла до 100м.
  2. 100BASE-TX - используются две витые пары (неэкранированная и экранированная). Расстояние от концентратора до конечного узла до 100м.
  3. 100BASE-FX - используется оптоволоконный кабель (два волокна в кабеле). Расстояние от концентратора до конечного узла до 2000м.

Сетевая технология локальных сетей Gigabit Ethernet – обеспечивает скорость передачи 1000 Мбит/с.

Существуют следующие модификации стандарта:

  1. 1000BASE-SX – применяется оптоволоконный кабель с длиной волны светового сигнала 850 нм.
  2. 1000BASE-LX – используется оптоволоконный кабель с длиной волны светового сигнала 1300 нм.
  3. 1000BASE-CX – используется экранированная витая пара.
  4. 1000BASE-T – применяется счетверенная неэкранированная витая пара.

Локальные сети Fast Ethernet и Gigabit Ethernet совместимы с локальными сетями, выполненными по технологии (стандарту) Ethernet, поэтому легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую вычислительную сеть.

Сетевые технологии локальных сетей IEEE802.5/Token-Ring

Сеть Token-Ring предполагает использование разделяемой среды передачи данных, которая образуется объединением всех узлов в кольцо.

Сеть Token-Ring имеет звездно-кольцевую топологию (основная кольцевая и звездная дополнительная топология). Для доступа к среде передачи данных используется маркерный метод (детерминированный маркерный метод).

Стандарт поддерживает витую пару (экранированную и неэкранированную) и оптоволоконный кабель. Максимальное число узлов на кольце - 260, максимальная длина кольца - 4000 м. Скорость передачи данных до 16 Мбит/с.

Сетевые технологии локальных сетей IEEE802.4/ArcNet

В качестве топологии локальная сеть ArcNet использует “шину” и “пассивную звезду”. Поддерживает экранированную и неэкранированную витую пару и оптоволоконный кабель.

В сети ArcNet для доступа к среде передачи данных используется метод передачи полномочий. Локальная сеть ArcNet - это одна из старейших сетей и пользовалась большой популярностью. Среди основных достоинств локальной сети ArcNet можно назвать высокую надежность, низкую стоимость адаптеров и гибкость.

Основным недостаткам сети является низкая скорость передачи информации (2,5 Мбит/с). Максимальное количество абонентов - 255. Максимальная длина сети - 6000 метров.

Сетевые технологии локальных сети FDDI (Fiber Distributed Data Interface)

FDDI– стандартизованная спецификация для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/с. Эта технология во многом базируется на архитектуре Token-Ring и используется детерминированный маркерный доступ к среде передачи данных.

Максимальная протяженность кольца сети – 100 км. Максимальное количество абонентов сети – 500. Сеть FDDI - это очень высоконадежная сеть, которая создается на основе двух оптоволоконных колец, образующих основной и резервный пути передачи данных между узлами.

Введение

Глава 1. Формы использования сетевых технологий в образовании

1 Сетевые технологии в образовании

2 Электронная почта

1.3 Технология World-Wide Web (WWW)

1.4 Поисковые системы и каталоги Интернет

5 Компьютерные телеконференции

6 Электронные библиотеки

Глава 2. Собственно образовательные сетевые технологии и ресурсы

1 Желательные компоненты системы сетевого образования

2 Образовательные порталы и дистанционное образование

Заключение


Введение

Образование должно опережать жизнь. Это аксиома, давно ставшая общим местом, но по-прежнему остающаяся (по крайней мере, в России) чистой декларацией. Каким образом образование может опережать жизнь? Понятно, что преподавать то, чего ещё нет, невозможно. Но давать учащемуся самые современные знания, одновременно ориентируя его на решение основополагающих, концептуальных вопросов, - можно. Именно концептуальность образования в области конкретных реализаций стимулирует поиск новых, более совершенных, более смелых решений.

Информатизация является объективным процессом во всех сферах человеческой деятельности, в том числе образовании. Цель информатизации образования состоит в глобальной интенсификации интеллектуальной деятельности за счет использования новых информационных технологий.

Информационная насыщенность современного общества, его функциональность на достойном уровне сегодня предполагают такие скорости движения информации, которые могут обеспечить только компьютерные сети, интегрированные в глобальное информационное пространство.

Таким образом, цель данной работы - рассмотреть проблемы внедрения в образование и образовательный процесс современных форм и методов обучения на основе достижений компьютерной техники и коммуникационных технологий в связи с растущей глобализацией всех областей жизни общества, в том числе и педагогической науки и практики.

В соответствии с целью, объектом и предметом исследования были поставлены следующие задачи: выявление основных проблем и перспектив внедрения в образование информатизации; рассмотрение форм использования сетевых технологий в образовании; обзор сетевых технологий, в российском образовании.


.1 Сетевые технологии в образовании

Бурное развитие телекоммуникационных технологий, в частности сети Интернет, и мультимедиа в последние годы не только способствовало появлению повышенного интереса к использованию компьютеров в учебном процессе, но и обусловило появление системы образования нового поколения - компьютерного дистанционного образования. О чем свидетельствует приведенная ниже схема.

Схема 1 - Образование нового поколения - компьютерное дистанционное образование

Сетевое образование, как один из видов дистанционного, представляет собой быстро меняющуюся и пока во многом гипотетическую область социально-экономического развития, плохо поддающуюся прогнозированию, что предполагает важность оценки альтернативных технологий и всевозможный "подогрев" интереса общественности и специалистов к этой области.

Основная проблематика сетевого образования, включает вопросы развития новых технологических схем, модернизацию методических ресурсов и развитие инфраструктуры. Рассмотрение актуальных проблем сетевого образования происходит на фоне продолжающегося в последние годы процесса сокращения рабочих мест практически во всех развитых странах, ускорения модернизации под воздействием экологических ограничений содержания многих профессий, с одной стороны, и, с другой, - вследствие непрекращающегося технологического развития человечества.

Всё это ведёт к сокращению жизненного цикла знаний и навыков, превращает образовательную функцию из разовой (как в начале века) и повторяющейся (в середине века) в регулярную. Наиболее яркий пример - информационные технологии, меняющие программно-технические платформы через полтора-два года. В этих условиях классическая форма очного обучения становится лишь частью общего образовательного инструментария, причём всё меньшей частью. Внешне незаметно, но непрерывно возрастает косвенное участие в образовательном процессе электронных средств массовой информации - в первую очередь, телевидения, а в последние годы - и общедоступных компьютерных сетей.

1.2 Электронная почта

В качестве самой популярной "несущей" технологии в дистанционном образовании сейчас используется обычная электронная почта, базирующаяся на протоколе TCP/IP . Обучающимся очень часто бывает удобно разделять момент времени получения и осмысления учебной информации и момент времени направления ответного сигнала, который может представлять собой дополнительные вопросы к "учителю", или ответы на контрольные вопросы и задачи, содержащиеся в полученном учебном материале.

В равной степени электронная почта хороша для поддержки и других базисных функций образовательного процесса. Привлекательность технологической схемы электронной почты, опирающаяся на её относительную доступность и дешевизну, по-видимому, сохранится для "заочников" на десятки лет.

В последнее время все больше внимания уделяется технологиям реального времени, в том числе, в первую очередь, технологии "всемирной паутины" -World Wide Web.

1.3 Технология World-Wide Web (WWW)

Технология Internet, названная Всемирная паутина (World-WideWeb, WWW или W3) является одним из популярных и интересных сервисов Интернет сегодня, а также удобным средством работы с информацией. Очень часто понятия WWW и Интернет даже считают тождественными.

Эта система основана на двух "китах" - Протокол Передачи Гипертекста - Hypertext Transport Protocol (HTTP), который служит для передачи сложных документов, и Язык Создания Гипертекста - Hypertext Markup Language (HTML), использующий гипертекстовые связи для определения объектов внутри документов-файлов.- информационная система, которой весьма непросто дать корректное определение. Вот некоторые из эпитетов, которыми она может быть обозначена: гипертекстовая, распределенная, интегрирующая, глобальная. WWW работает по принципу клиент-сервер, точнее, клиент-серверы: существует множество серверов, которые по запросу клиента возвращают ему гипермедийный документ - документ, состоящий из частей с разнообразным представлением информации (текст, звук, графика, трехмерные объекты и т.д.), в котором каждый элемент может являться ссылкой на другой документ или его часть. Ссылки WWW указывают не только на документы, специфичные для самой WWW, но и на прочие сервисы и информационные ресурсы Интернет. Более того, большинство программ-клиентов WWW (browsers, навигаторы) не просто понимают такие ссылки, но и являются программами-клиентами соответствующих сервисов: ftp, gopher, сетевых новостей Usenet, электронной почты и т.д. Таким образом, программные средства WWW являются универсальными для различных сервисов Интернет, а сама информационная система WWW играет интегрирующую роль.- сервис прямого доступа, требующий полноценного подключения к Интернет, и более того, часто требующий быстрых линий связи, в случае, если документы, которые Вы читаете, содержат много графики или другой нетекстовой информации.

Технология Web, разработанная в 1989 г. в Женеве, в Лаборатории физики элементарных частиц Европейского центра ядерных исследований (CERN) Тимом Бернерс-Ли (Tim Berners-Lee) и его коллегами-программистами, сначала была направлена на создание единой сети для научных сотрудников, занимающихся физикой высоких энергий. Однако вскоре эта технология нашла гораздо более широкое применение. Первые программы, демонстрирующие работу системы, были закончены в 1992 году и с тех пор WWW - наиболее динамичная и быстро развивающаяся часть Интернет.

Система WWW проста в использовании, что и предопределило ее успех. До появления World Wide Web Интернет была доступна только квалифицированным пользователям компьютера. Теперь же, не имеющие большого компьютерного опыта легко пользуются системой.

1.4 Поисковые системы и каталоги Интернет

В Интернет можно найти любую информацию из той, которая в ней имеется. Интернет - это гигантская библиотека. Как и во всякой библиотеке, здесь надо уметь пользоваться поисковым аппаратом. Как искать? Каталог информации и услуг, доступных в Интернет с помощью WWW, уже сегодня занял бы не один десяток томов печатного текста. Поэтому на первый план выходит проблема поиска нужной информации, которую помогают решить специализированные поисковые системы.

Пожалуй, самой полезной чертой Интернет является наличие в нем поисковых серверов. Это выделенные компьютеры, которые автоматически просматривают все ресурсы Интернет, которые могут найти, и индексируют их содержание. Затем имеется возможность передать такому серверу фразу или набор ключевых слов, описывающих интересующую тему, и сервер возвратит список ресурсов, соответствующих запросу.

Сегодняшние поисковые системы поддерживают индексы, включающие весьма значительную часть ресурсов Интернет. Таких серверов существует довольно-таки много, и вкупе они охватывают практически все доступные ресурсы. Если в Интернет есть информация, которая интересует обучающегося, то ее наверняка можно найти при помощи поисковых серверов. Это самое мощное средство нахождения ресурсов в сети. В каталогах Интернет хранятся тематически систематизированные коллекции ссылок на различные сетевые ресурсы, в первую очередь на документы World Wide Web. Ссылки в такие каталоги заносятся не автоматически, но их администраторами. Более того, занимающиеся этим люди стараются сделать свои коллекции наиболее полными, включающими все доступные ресурсы на каждую тему. В результате пользователю не нужно самому собирать все ссылки по интересующему его вопросу, но достаточно найти этот вопрос в каталоге - работа по поиску и систематизации ссылок уже сделана за него.


Глобальная сеть Интернет позволяет поддерживать такой важный режим связи, как телеконференции. Под компьютерной телеконференцией понимается специальным образом организованная область памяти на компьютере, поддерживающем работу телекоммуникационной системы. Все абоненты, имеющие доступ к этой области памяти (к телеконференции), имеют возможность, как получить на свой компьютер весь текст, который уже находился к этому моменту в этой области памяти, так и добавить к нему свой текст. По мере добавления к телеконференции текстов и реплик, присылаемых ее участниками, общий текст становится все более похожим на стенограмму обычной конференции. Отсюда и название - телеконференция.

Существует много видов телеконференций, отличающихся способами взаимодействия ее участников с компьютером (пользовательским интерфейсом), а также способами организации рубрик телеконференции. Различия определяются тем программным обеспечением, которое использует телекоммуникационная система для реализации режима телеконференций.

Однако, несмотря на различие телеконференций, всем им присуща одинаковая структура. Конференция начинается некоторым текстом, задающим ее тему. Далее каждый из участников имеет возможность добавить к этому тексту свою реплику. Все реплики располагаются последовательно по мере поступления и доступны вместе с исходным текстом всем участникам телеконференции. При последующих обращениях можно получать либо весь текст, либо только новые фрагменты текста. Каждый участник телеконференции имеет возможность работать в удобное для него время.

Участники телеконференции могут быть разбиты на группы для разработки отдельных тем, их доступ к отдельным темам может быть ограничен. Преподаватель может задавать наводящие вопросы, ставить новые проблемы, обращаться к отдельным участникам индивидуально. В общем, телеконференция предоставляют широкие возможности для организации учебного процесса. Однако каковы бы ни были задания или смысл всей телеконференции, это коллективная деятельность особого рода. Участники этой деятельности не видят друг друга, возможно незнакомыми никогда не познакомятся лично. Их работа в телеконференции растянута во времени, и происходит, как правило, на фоне основной деятельности, возможно не имеющей отношения к изучаемому материалу. Как бы то ни было, поведение участников телеконференций оказывается подверженным некоторым закономерностям, зная которые можно эффективно влиять на успешность самой телеконференции и, как следствие, успешность изучения того учебного материала, усвоению которого телеконференция посвящена.

Кроме того, конференции могут подразделяться: по способам доступа; по способам участия; по способам достижения цели. Что и показано в нижеследующей схеме.

Схема 2 - Способы конференций

1.6 Электронные библиотеки

Формы использования сетевых технологий в образовании могут быть различными. В принципе, хранение документов в электронном виде на носителе, доступном из сети, и в формате, интерпретируемом любым достаточно распространённым пользовательским программным пакетом, уже является образовательной сетевой технологией. Речь идёт о так называемых электронных библиотеках. Это могут быть и доступные только по ftp файловые хранилища, в которых документы рассортированы по каталогам в соответствии с тематикой, хронологией или форматом, а каждый каталог снабжен файлом описаний (file_id.diz, descript.ion, files.bbs, read.me и т.п.). Сетевые библиотеки с подобным устройством, хотя и продолжают сегодня существовать, но, безусловно, не являются массовыми, по крайней мере - самыми массовыми. Да и назвать такое файлохранилище библиотекой было бы не совсем верно - это больше похоже на домашнюю книжную полку.

В эпоху гипертекста и организованных баз данных для интерфейса сетевой библиотеки более характерно наличие гипертекстовой главной, титульной страницы и доступного с неё электронного каталога на базе какой-либо достаточно мощной СУБД (среды управления базами банных; чаще всего сегодня это MySQL) с возможностью поиска документа (записи) по различным ключам (автор, заглавие, тематика, контекст бибзаписи, любое встречающееся слово и т.д.) и сортировки по различным признакам.

Определение собственно ключей и признаков сортировки, т.е. классификация единиц хранения - очень важная часть организации сетевой библиотеки. Большая часть ныне существующих русскоязычных сетевых библиотек создавалась любителями, и классификация хранимых текстов в них оставляет желать много лучшего

Можно сказать, что российское интернет-библиотечное дело находится в зачаточном состоянии, что не удивляет: русскому сегменту сети Интернет недавно исполнилось всего десять лет.

Использование же российскими пользователями зарубежных сетевых хранилищ информации часто бывает затруднено недостаточным знанием английского языка, и отсутствием на многих российских рабочих станциях программ, способных интерпретировать форматы postscript и TeX/LaTeX.

Глава 2. Собственно образовательные сетевые технологии и ресурсы

.1 Желательные компоненты системы сетевого образования

Сами по себе хранилища информации, пусть и оснащённые достаточно удобным интерфейсом и общедоступные, можно считать образовательными порталами лишь с определенной натяжкой. Для того, чтобы информация служила образованию, желательны, кроме неё самой, ещё несколько элементов таких, как программа и методики усвоения информации; наставник; система проверки усвоенных знаний; способ удостоверения полученной в процессе образования квалификации. Схема иллюстрирует данные положения.

Схема 3 - Компоненты системы сетевого образования

электронный библиотека образование

2.2 Образовательные порталы и дистанционное образование

Для образования, получаемого по сети, в речь сегодня введён новый термин - дистанционное. От традиционного заочного дистанционное образование отличается тем, что получающий его, как правило, не имеет полноценного вербального и визуального контакта с преподавателем (преподавателями) даже эпизодически. Он не выезжает на установочные и экзаменационные сессии, не присутствует лично на лекциях и экзаменационных испытаниях. Обучение сводится к получению обучающимся по сети программы, методик, заданий и специальных текстов, ответу (по сети же) на контрольные вопросы и тесты и выполнению и отсылке в адрес учреждения дистанционного образования какой-то итоговой работы.

Реальный контроль за работой обучаемого фактически сведён к нулю, а потому не удивительно, что престиж дистанционного образования на сегодняшний день очень низок - даже в сравнении с престижем заочного. Безусловно, то же следует сказать и о его качестве.

Так или иначе, основным дистанционное образование на сегодняшний день быть не может. По крайней мере - в России, где эпоха сверхузких специалистов наступит, вероятно, ещё не скоро - в силу специфики национально-исторической ситуации.

Это связано с сегодняшним уровнем развития технологии. Вероятно, когда скорость обмена данными и качество представления этих данных на пользовательском терминале возрастут настолько, что смогут создавать хотя бы минимальный эффект присутствия, качество и, соответственно, престиж дистантного образования приблизятся к качеству и престижу очного, т.к. можно будет проводить вполне полноценные удалённые лекции, конференции, экзамены.

В какой-то степени это возможно и сегодня - при помощи webcam и программ типа NetMeeting, однако web-камеры пока являются слишком дорогим оборудованием для того, чтобы присутствовать на рабочих станциях достаточного количества обучаемых, а скорость подключения большинства рядовых рабочих станций к сети столь низка при, одновременно, весьма высокой оплате этого подключения, что и нормально и безболезненно для бюджета принять обучающемуся качественный видео-аудиопоток часто представляется мало возможным. Отсюда - простой (и фактически анонимный) обмен текстами и "птичками" при ответе на тесты.

Заключение

Научный подход к решению проблем информатизации образования ставит ближайшей целью задачу овладения обучающимися комплексом знаний, навыков, умений, выработки таких качеств личности, которые смогли бы обеспечить успешное выполнение задач профессиональной деятельности и комфортное существование в условиях информационного общества.

Технологическая направленность образования заключается в следующих направлениях его реализации:

внедрение средств НИТ в образовательный процесс;

повышение уровня компьютерной (информационной) подготовки участников образовательного процесса;

системная интеграция информационных технологий в образовании, поддерживающих процессы обучения;

построение и развитие единого образовательного информационного пространства.

Научные исследования, проведенные в Российском научно-исследовательском институте системной интеграции (Рос НИИ СИ) Министерства образования РФ, позволили выделить ряд актуальных информационных и телекоммуникационных технологий в средней и высшей школе России, среди них: 1. Электронный учебник; 2. Система мультимедиа; 3. Экспертная система; 4. Система автоматизированного проектирования; 5. Электронный библиотечный каталог; 6. Базы данных; 7. Локальные и распределенные (глобальные) вычислительные системы; 8. Электронная почта; 9. Голосовая электронная почта; 10. Электронная доска объявлений; 11. Система телеконференций; 12. Настольная электронная типография.

Доступность достигается за счет возможности получать образование различными слоями населения; в различных географических регионах; на различных технических платформах; на различных языках; в различных учебных заведениях.

Не вызывает сомнений, что всестороннее и полноценное использование преимуществ сетевого обучения позволит поднять образование на качественно новый, отвечающий постоянно растущим потребностям «информационного» общества уровень.

Список использованной литературы

1.Федеральный закон Российской Федерации от 29.12.2012 г. №217-ФЗ «Об образовании».

.Приказ Минобрнауки России от 6 мая 2005 г. № 137 «Об использовании дистанционных образовательных технологий».