Для передачи файлов используется протокол прикладного уровня. Протоколы электронной почты: SMTP, POP, IMAP. Трафик и скорость передачи информации

Ключевой термин: протокол.

Протокол (protocol) - набор правил, алгоритм обмена информацией между абонентами сети.

Второстепенные термины

    Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

    Привязка (binding) является установкой соответствия стека протоколов плате сетевого адаптера.

    Прикладные протоколы - это протоколы, работающие на верхнем уровне модели OSI и обеспечивающие взаимодействие приложений и обмен данными между ними.

    Транспортные протоколы - это протоколы, поддерживающие сеансы связи между компьютерами и гарантирующие надежный обмен данных между ними.

    Сетевые протоколы - это протоколы, обеспечивающие услуги связи, управляющие несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу и определяющие правила для осуществления связи в конкретных сетевых средах.

Назначение протоколов

Протоколы (protocols) - это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Три основных момента, касающихся протоколов.

    Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

    Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает.

    Если, например, какой-то протокол работает на Физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату сетевого адаптера и их поступление в сетевой кабель.

    Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функциям и возможностям стека.

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила и процедуры, или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, эти действия (шаги) должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютере-получателе - снизу вверх.

Компьютер-отправитель

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия:

    разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;

    добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;

    подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке:

    принимает пакеты данных из сетевого кабеля;

    через плату сетевого адаптера передает пакеты в компьютер;

    удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;

    копирует данные из пакетов в буфер - для их объединения в исходный блок данных;

    передает приложению этот блок данных в том формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными. Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

Маршрутизируемые и немаршрутизируемые протоколы

До середины 80-х годов большинство локальных сетей были изолированными. Они обслуживали один отдел или одну компанию и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими коммерческой информации возрос, ЛВС стали компонентами больших сетей.

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами. Так как маршрутизируемые протоколы могут использоваться для объединения нескольких локальных сетей в глобальную сеть, их роль постоянно возрастает.

Протоколы в многоуровневой архитектуре

Несколько протоколов, которые работают в сети одновременно, обеспечивают следующие операции с данными:

    подготовку;

    передачу;

    прием;

    последующие действия.

Работа различных протоколов должна быть скоординирована так чтобы исключить конфликты или незаконченные операции. Этого можно достичь с помощью разбиения на уровни.

Стеки протоколов

Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

Так же как и уровни в модели OSI, нижние уровни стека описывают правила взаимодействия оборудования, изготовленного разными производителями. А верхние уровни описывают правила для проведения сеансов связи и интерпретации приложений. Чем выше уровень, тем сложнее становятся решаемые им задачи и связанные с этими задачами протоколы.

Привязка

Процесс, который называется привязка, позволяет с достаточной гибкостью настраивать сеть, т.е. сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Например, два стека протоколов, IPX/SPX и TCP/IP, могут быть привязаны к одной плате сетевого адаптера. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

Порядок привязки определяет очередность, с которой операционная система выполняет протоколы. Если с одной платой сетевого адаптера связано несколько протоколов, то порядок привязки определяет очередность, с которой будут использоваться протоколы при попытках установить соединение. Обычно привязку выполняют при установке операционной системы или протокола. Например, если TCP/IP - первый протокол в списке привязки, то именно он будет использоваться при попытке установить связь. Если попытка неудачна, компьютер попытается установить соединение, используя следующий по порядку протокол в списке привязки.

Привязка (binding) не ограничивается установкой соответствия стека протоколов плате сетевого адаптера. Стек протоколов должен быть привязан (или ассоциирован) к компонентам, уровни которых и выше, и ниже его уровня. Так, TCP/IP наверху может быть привязан к Сеансовому уровню NetBIOS, а внизу - к драйверу платы сетевого адаптера. Драйвер, в свою очередь, привязан к плате сетевого адаптера.

Стандартные стеки

В компьютерной промышленности в качестве стандартных моделей протоколов разработано несколько стеков. Вот наиболее важные из них:

    набор протоколов ISO/OSI;

    IBM System Network Architecture (SNA);

    Digital DECnet;

    Novell NetWare;

    Apple AppleTalk;

    набор протоколов Интернета, TCP/IP.

Протоколы этих стеков выполняют работу, специфичную для своего уровня. Однако коммуникационные задачи, которые возложены на сеть, приводят к разделению протоколов на три типа:

    прикладной;

    транспортный;

    сетевой.

Схема расположения этих типов соответствует модели OSI.

Прикладные протоколы

Прикладные протоколы работают на верхнем уровне модели OSI. Они обеспечивают взаимодействие приложений и обмен данными между ними. К наиболее популярным прикладным протоколам относятся:

    АРРС (Advanced Program-to-Program Communication) - одноранговый SNA-протокол фирмы IBM, используемый в основном на AS/400;

    FTAM (File Transfer Access and Management) - протокол OSI доступа к файлам;

    X.400 - протокол CCITT для международного обмена электронной почтой;

    Х.500 - протокол CCITT служб файлов и каталогов на нескольких системах;

    SMTP (Simple Mail Transfer Protocol) - протокол Интернета для обмена электронной почтой;

    FTP (File Transfer Protocol) - протокол Интернета для передачи файлов;

    SNMP (Simple Network Management Protocol) - протокол Интернета для мониторинга сети и сетевых компонентов;

    Telnet - протокол Интернета для регистрации на удаленных хостах и обработки данных на них;

    Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры;

    NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell;

    Apple Talk и Apple Share - набор сетевых протоколов фирмы Apple;

    AFP (AppleTalk Filling Protocol) - протокол удаленного доступа к файлам фирмы Apple;

    DAP (Data Access Protocol) - протокол доступа к файлам сетей DECnet.

Транспортные протоколы

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данных между ними. К популярным транспортным протоколам относятся:

    TCP (Transmission Control Protocol) - TCP/IP-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;

    SPX - часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для данных, разбитых на последовательность фрагментов, фирмы Novell;

    NWLink - реализация протокола IPX/SPX от фирмы Microsoft;

    NetBEUI - устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI);

    АТР (AppleTalk Transaction Protocol), NBP (Name Binding Protocol) - протоколы сеансов связи и транспортировки данных фирмы Apple.

Сетевые протоколы

Сетевые протоколы обеспечивают услуги связи. Эти протоколы управляют несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Сетевые протоколы, кроме того, определяют правила для осуществления связи в конкретных сетевых средах, например Ethernet или Token Ring. К наиболее популярным сетевым протоколам относятся:

    IP (Internet Protocol) - TCP/IP-протокол для передачи пакетов;

    IPX (Internetwork Packet Exchange) - протокол фирмы NetWare для передачи и маршрутизации пакетов;

    NWLink - реализация протокола IPX/SPX фирмой Microsoft;

    NetBEUI - транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS;

    DDP (Datagram Delivery Protocol) - AppleTalk-протокол транспортировки данных.

Стандартные стеки коммуникационных протоколов

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FT AM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам.

Стек TCP/IP

Стек TCP/IP был разработан по инициативе Министерства обороны США более 25 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов - протоколы TCP/IP, на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьютеров, на которых работает стек IPX/SPX, и это говорит о резком переломе в отношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обязательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, однако факт остается фактом - сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI - NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 3.4.3 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI - это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности - ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.

Реализация межсетевого взаимодействия средствами TCP/IP

В настоящее время стек TCP/IP является самым популярным средством организации составных сетей. На рис. 3.4.4 показана доля, которую составляет тот или иной стек протоколов в общемировой инсталляционной сетевой базе. До 1996 года бесспорным лидером был стек IPX/SPX компании Novell, но затем картина резко изменилась - стек TCP/IP по темпам роста числа установок намного стал опережать другие стеки, а с 1998 года вышел в лидеры и в абсолютном выражении. Именно поэтому дальнейшее изучение функций сетевого уровня будет проводиться на примере стека TCP/IP.

В стеке TCP/IP определены 4 уровня (рис. 3.4.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе разных сетевых технологий.

Таблица 3.4.1. Многоуровневая архитектура стека TCP/IP

Уровень 1 Прикладной уровень
Уровень 2 Основной (транспортный) уровень
Уровень 3
Уровень 4 Уровень сетевых интерфейсов

Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействгм, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежной информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и "не интересуются" способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/ SNAP, причем в поле Туре заголовка SNAP должен быть указан код 0x0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/ SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Туре. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети ATM, появилась в 1994 году вскоре после принятия основных стандартов этой технологии).

Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно (рис. 3.4.6). Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированны на работу с приложениями (рис. 3.4.7).

Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.

Протоколы транспортного уровня уже более зависят от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако, подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах. Протоколы двух нижних уровней являются сетезависимыми, а следовательно, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узлах составной сети, так и на маршрутизаторах.

Каждый коммуникационный протокол оперирует с некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 3.4.8).

Потоком называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP.

Протокол TCP нарезает из потока данных сегменты.

Единицу данных протокола UDP часто называют дейтаграммой (или датаграм-мой). Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол межсетевого взаимодействия IP.

Дейтаграмму протокола IP называют также пакетом.

В стеке TCP/IP принято называть кадрами (фреймами) единицы данных протоколов, на основе которых IP-пакеты переносятся через подсети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в локальной технологии.

Выводы по теме

    Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

    Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

    Работа различных протоколов скоординирована так, чтобы исключить конфликты или незаконченные операции. Этого достигается с помощью разбиения на уровни стека протоколов.

    Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.

    Процесс, который называется привязка, позволяет с достаточной гибкостью сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

    Коммуникационные задачи, которые возложены на компьютерную сеть, приводят к разделению протоколов на три типа:

    а) прикладной;

    б) транспортный;

    в) сетевой.

    Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP. Стек TCP/IP имеет 4 уровня: прикладной, основной, уровень межсетевого взаимодействия и уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

    Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

    На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

    Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

    Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

    В стеке TCP/IP для именования единиц передаваемых данных на разных уровнях используют разные названия: поток, сегмент, дейтаграмма, пакет, кадр.


Протокол SMTP

SMTP (англ. Simple Mail Transfer Protocol -- простой протокол передачи почты) -- это сетевой протокол, предназначенный для передачи электронной почты в сетях TCP/IP.

SMTP используется для отправки почты от пользователей к серверам и между серверами для дальнейшей пересылки к получателю. Для приёма почты почтовый клиент должен использовать протоколы POP3 или IMAP.

Данные передаются при помощи TCP, при этом обычно используется порт 25 или 587. При передаче сообщений между серверами обычно используется порт 25.

Чтобы доставить сообщение до адресата, необходимо переслать его почтовому серверу домена, в котором находится адресат. Для этого обычно используется запись типа MX (англ. Mail eXchange -- обмен почтой) системы DNS. Если MX запись отсутствует, то для тех же целей может быть использована запись типа A. Некоторые современные реализации SMTP-серверов (например, Exim ) для определения сервера, обслуживающего почту в домене адресата, также могут задействовать SRV-запись (RFC 2782).

Сервер SMTP -- это конечный автомат с внутренним состоянием. Клиент передает на сервер строку команда<пробел>параметры<перевод строки>. Сервер отвечает на каждую команду строкой, содержащей код ответа и текстовое сообщение, отделенное пробелом. Код ответа -- число от 100 до 999, представленное в виде строки, трактующийся следующим образом:

  • · 2ХХ -- команда успешно выполнена
  • · 3XX -- ожидаются дополнительные данные от клиента
  • · 4ХХ -- временная ошибка, клиент должен произвести следующую попытку через некоторое время
  • · 5ХХ -- неустранимая ошибка

Текстовая часть ответа носит справочный характер и предназначен для человека, а не программы.

Безопасность SMTP и спам

Изначально SMTP не поддерживал единой схемы авторизации. В результате этого спам стал практически неразрешимой проблемой, так как было невозможно определить, кто на самом деле является отправителем сообщения -- фактически можно отправить письмо от имени любого человека. В настоящее время производятся попытки решить эту проблему при помощи спецификаций SPF, Sender ID, Yahoo Domain Keys. Единой спецификации на настоящий момент не существует.

Протокол POP3

POP3 (англ. Post Office Protocol Version 3 -- протокол почтового отделения, версия 3) -- это сетевой протокол, используемый для получения сообщений электронной почты с сервера. Обычно используется в паре с протоколом SMTP.

Рис. 10. Схема «Клиент-сервер по протоколу POP3»

Описание протокола РОРЗ

Рассмотрим представленную на Рис. 10. схему «Клиент-сервер по протоколу POP3». Конструкция протокола РОРЗ обеспечивает возможность пользователю обратиться к своему почтовому серверу и изъять накопившуюся для него почту. Пользователь может получить доступ к РОР-серверу из любой точки доступа к Интернет. При этом он должен запустить специальный почтовый агент (UA), работающий по протоколу РОРЗ, и настроить его для работы со своим почтовым сервером. Итак, во главе модели POP находится отдельный персональный компьютер, работающий исключительно в качестве клиента почтовой системы (сервера). Подчеркнем также, что сообщения доставляются клиенту по протоколу POP, а посылаются по-прежнему при помощи SMTP. То есть на компьютере пользователя существуют два отдельных агента-интерфейса к почтовой системе - доставки (POP) и отправки (SMTP). Разработчики протокола РОРЗ называет такую ситуацию "раздельные агенты" (split UA). Концепция раздельных агентов кратко обсуждается в спецификации РОРЗ.

В протоколе РОРЗ оговорены три стадии процесса получения почты: авторизация, транзакция и обновление. После того как сервер и клиент РОРЗ установили соединение, начинается стадия авторизации. На стадии авторизации клиент идентифицирует себя для сервера. Если авторизация прошла успешно, сервер открывает почтовый ящик клиента и начинается стадия транзакции. В ней клиент либо запрашивает у сервера информацию (например, список почтовых сообщений), либо просит его совершить определенное действие (например, выдать почтовое сообщение). Наконец, на стадии обновления сеанс связи заканчивается. Далее перечислены команды протокола РОРЗ, обязательные для работающей в Интернет реализации минимальной конфигурации.

Команды протокола POP версии 3 (для минимальной конфигурации)

USER Идентифицирует пользователя с указанным именем

PASS Указывает пароль для пары клиент-сервер

QUIT Закрывает TCP-соединение

STAT Сервер возвращает количество сообщений в почтовом ящике плюс размер почтового ящика

LIST Сервер возвращает идентификаторы сообщений вместе с размерами сообщений (параметром команды может быть идентификатор сообщения)

RETR Извлекает сообщение из почтового ящика (требуется указывать аргумент-идентификатор сообщения)

DELE Отмечает сообщение для удаления (требуется указывать аргумент - идентификатор сообщения)

NOOP Сервер возвращает положительный ответ, но не совершает никаких действий

LAST Сервер возвращает наибольший номер сообщения из тех, к которым ранее уже обращались

RSET Отменяет удаление сообщения, отмеченного ранее командой DELE

В протоколе РОРЗ определено несколько команд, но на них дается только два ответа: +ОК (позитивный, аналогичен сообщению-подтверждению АСK) и -ERR (негативный, аналогичен сообщению "не подтверждено" NAK). Оба ответа подтверждают, что обращение к серверу произошло и что он вообще отвечает на команды. Как правило, за каждым ответом следует его содержательное словесное описание. В RFC 1225 есть образцы нескольких типичных сеансов РОРЗ. Сейчас мы рассмотрим несколько из них, что даст возможность уловить последовательность команд в обмене между сервером и клиентом.

После того как программа установила TCP-соединение с портом протокола РОРЗ (официальный номер 110), необходимо послать команду USER с именем пользователя в качестве параметра. Если ответ сервера будет +ОК, нужно послать команду PASS с паролем этого пользователя:

CLIENT: USER kcope ERVER: +ОК CLIENT: PASS secret SERVER: +ОК kcope"s maildrop has 2 messages (320 octets) (В почтовом ящике kcope есть 2 сообщения (320 байтов) ...)

Транзакции РОРЗ

Команда STAT возвращает количество сообщений и количество байтов в сообщениях:

SERVER: +ОК 2 320

Команда LIST (без параметра) возвращает список сообщений в почтовом ящике и их размеры:

Команда NOOP не возвращает никакой полезной информации, за исключением позитивного ответа сервера. Однако позитивный ответ означает, что сервер находится в соединении с клиентом и ждет запросов:

Следующие примеры показывают, как сервер POP3 выполняет действия. Например, команда RETR извлекает сообщение с указанным номером и помещает его в буфер местного UA:

CLIENT: RETR 1 SERVER: +OK 120 octets SERVER: (РОРЗ-сервер высылает сообщение целиком) SERVER: . . . . . .

Команда DELE отмечает сообщение, которое нужно удалить:

SERVER: +OK message 1 deleted ... (сообщение 1 удалено) CLIENT: DELE 2 SERVER: -ERR message 2 already deleted сообщение 2 уже удалено)

Команда RSET снимает метки удаления со всех отмеченных ранее сообщений:

(в почтовом ящике 2 сообщения (320 байтов))

Как и следовало ожидать, команда QUIT закрывает соединение с сервером:

CLIENT: QUIT SERVER: +OK dewey POP3 server signing off CLIENT: QUIT SERVER: +OK dewey POP3 server signing off (maildrop empty) CLIENT: QUIT SERVER: +OK dewey POP3 server signing off (2 messages left)

Обратите внимание на то, что отмеченные для удаления сообщения на самом деле не удаляются до тех пор, пока не выдана команда QUIT и не началась стадия обновления. В любой момент в течение сеанса клиент имеет возможность выдать команду RSET, и все отмеченные для удаления сообщения будут восстановлены.

Протокол IMAP

IMAP (англ. Internet Message Access Protocol ) -- интернет-протокол прикладного уровня для доступа к электронной почте.

IMAP предоставляет пользователю богатые возможности для работы с почтовыми ящиками, находящимися на центральном сервере. Почтовая программа, использующая этот протокол, получает доступ к хранилищу корреспонденции на сервере так, как будто эта корреспонденция расположена на компьютере получателя. Электронными письмами можно манипулировать с компьютера пользователя (клиента) без необходимости постоянной пересылки с сервера и обратно файлов с полным содержанием писем.

Преимущества по сравнению с POP

IMAP был разработан для замены более простого протокола POP3 и имеет следующие преимущества по сравнению с последним:

  • · Письма хранятся на сервере, а не на клиенте. Возможен доступ к одному и тому же почтовому ящику с разных клиентов. Поддерживается также одновременный доступ нескольких клиентов. В протоколе есть механизмы с помощью которых клиент может быть проинформирован об изменениях, сделанных другими клиентами.
  • · Поддержка нескольких почтовых ящиков (или папок). Клиент может создавать, удалять и переименовывать почтовые ящики на сервере, а также перемещать письма из одного почтового ящика в другой.
  • · Возможно создание общих папок, к которым могут иметь доступ несколько пользователей.
  • · Информация о состоянии писем хранится на сервере и доступна всем клиентам. Письма могут быть помечены как прочитанные, важные и т. п.
  • · Поддержка поиска на сервере. Нет необходимости скачивать с сервера множество сообщений для того чтобы найти одно нужное.
  • · Поддержка онлайн-работы. Клиент может поддерживать с сервером постоянное соединение, при этом сервер в реальном времени информирует клиента об изменениях в почтовых ящиках, в том числе о новых письмах.
  • · Предусмотрен механизм расширения возможностей протокола.

Протоколы прикладного уровня служат для передачи информации конкретным клиентским приложениям, запущенным на сетевом компьютере. В IP-сетях протоколы прикладного уровня опираются на стандарт TCP и выполняют ряд специализированных функций, предоставляя пользовательским программам данные строго определенного назначения. Ниже мы кратко рассмотрим несколько прикладных протоколов стека TCP/IP.

Протокол FTP

Как следует из названия, протокол FTP (File Transfer Protocol) предназначен для передачи файлов через Интернет. Именно на базе этого протокола реализованы процедуры загрузки и выгрузки файлов на удаленных узлах Всемирной Сети. FTP позволяет переносить с машины па машину не только файлы, но и целые папки, включающие поддиректории на любую глубину вложений. Осуществляется это путем обращения к системе команд FTP, описывающих ряд встроенных функций данного протокола.

Протоколы РОРЗ и SMTP

Прикладные протоколы, используемые при работе с электронной почтой, называются SMTP (Simple Mail Transfer Protocol) и РОРЗ (Post Office Protocol), первый «отвечает» за отправку исходящей корреспонденции, второй — за доставку входящей.
В функции этих протоколов входит организация доставки сообщений e-mail и передача их почтовому клиенту. Помимо этого, протокол SMTP позволяет отправлять несколько сообщений в адрес одного получателя, организовывать промежуточное хранение сообщений, копировать одно сообщение для отправки нескольким адресатам. И РОРЗ, и SMTP обладают встроенными механизмами распознавания адресов электронной почты, а также специальными модулями повышения надежности доставки сообщений.

Протокол HTTP

Протокол HTTP (Hyper Text Transfer Protocol) обеспечивает передачу с удаленных серверов на локальный компьютер документов, содержащих код разметки гипертекста, написанный на языке HTML или XML, то есть веб-страниц. Данный прикладной протокол ориентирован прежде всего на предоставление информации программам просмотра веб-страниц, веб-браузерам, наиболее известными из которых являются такие приложения, как Microsoft Internet Explorer и Netscape Communicator.
Именно с использованием протокола HTTP организуется отправка запросов удаленным http-серверам сети Интернет и обработка их откликов; помимо
этого HTTP позволяет использовать для вызова ресурсов Всемирной сети адреса стандарта доменной системы имен (DNS, Domain Name System), то есть обозначения, называемые URL (Uniform Resource Locator) вида http:/ /www.domain.zone/page.htm (.html).

Протокол TELNET

Протокол TELNET предназначен для организации терминального доступа к удаленному узлу посредством обмена командами в символьном формате ASCII. Как правило, для работы с сервером по протоколу TELNET на стороне клиента должна быть установлена специальная программа, называемая telnet-клиентом, которая, установив связь с удаленным узлом, открывает в своем окне системную консоль операционной оболочки сервера. После этого вы можете управлять серверным компьютером в режиме терминала, как своим собственным (естественно, в очерченных администратором рамках). Например, вы получите возможность изменять, удалять, создавать, редактировать файлы и папки, а также запускать на исполнение программы на диске серверной машины, сможете просматривать содержимое папок других пользователей. Какую бы операционную систему вы ни использовали, протокол Telnet позволит вам общаться с удаленной машиной «на равных». Например, вы без труда сможете открыть сеанс UNIX на компьютере, работающем под управлением MS Windows.

Протокол UDP

Прикладной протокол передачи данных UDP (User Datagram Protocol) используется на медленных линиях для трансляции информации как дейтаграмм.
Дейтаграмма содержит полный комплекс данных, необходимых для ее отсылки и получения. При передаче дейтаграмм компьютеры не занимаются обеспечением стабильности связи, поэтому следует принимать особые меры для обеспечения надежности.
Схема обработки информации протоколом UDP, в принципе, такая же, как и в случае с TCP, но с одним отличием: UDP всегда дробит информацию по одному и тому же алгоритму, строго определенным образом. Для осуществления связи с использованием протокола UDP применяется система отклика: получив UDP-пакет, компьютер отсылает отправителю заранее обусловленный сигнал. Если отправитель ожидает сигнал слишком долго, он просто повторяет передачу.
На первый взгляд может показаться, что протокол UDP состоит сплошь из одних недостатков, однако есть в нем и одно существенное достоинство: прикладные интернет-программы работают с UDP в два раза быстрее, чем с его более высокотехнологичным собратом TCP.

Точки доступа с брандмауэрами
Самым простым вариантом использования брандмауэра для беспроводной сети является использование встроенного в точку доступа. Некоторые сочетают функции беспроводной точки доступа с ши...

Устранение циклических модернизаций
Еще один довод в пользу применения тонкой клиентной сети состоит в возможности продления срока службы старых ПК. Порой кажется, что большая часть программного обеспечения (коммерческих приложений) в...

Аутентификация: стандарт 802.1х
Из-за прорех в защите со спецификацией WEP-шифрования многие производители беспроводного сетевого оборудования и разработчики программного обеспечения уже адаптировали новый IEEE-станд...

Протоколы прикладного уровня

Почему существуют два транспортных протокола TCP и UDP, а не один из них? Дело в том, что они предоставляют разные услуги прикладным процессам. Большинство прикладных программ пользуются только одним из них. Вы, как программист, выбираете тот протокол, который наилучшим образом соответствует вашим потребностям. Если вам нужна надежная доставка, то лучшим может быть TCP. Если вам нужна доставка датаграмм, то лучше может быть UDP. Если вам нужна эффективная доставка по длинному и ненадежному каналу передачи данных, то лучше может подойти протокол TCP. Если нужна эффективность на быстрых сетях с короткими соединениями, то лучшим может быть протокол UDP. Если ваши потребности не попадают ни в одну из этих категорий, то выбор транспортного протокола не ясен. Однако прикладные программы могут устранять недостатки выбранного протокола. Например, если вы выбрали UDP, а вам необходима надежность, то прикладная программа должна обеспечить надежность. Если вы выбрали TCP, а вам нужно передавать записи, то прикладная программа должна вставлять маркеры в поток байтов так, чтобы можно было различить записи.

Какие же прикладные программы доступны в сетях с TCP/IP?

Общее их количество велико и продолжает постоянно увеличиваться. Некоторые приложения существуют с самого начала развития internet. Например, TELNET и FTP. Другие появились недавно: X-Window, SNMP.

Протоколы прикладного уровня ориентированы на конкретные прикладные задачи. Они определяют как процедуры по организации взаимодействия определенного типа между прикладными процессами, так и форму представления информации при таком взаимодействии. В этом разделе мы коротко опишем некоторые из прикладных протоколов.

Протокол TELNET

Протокол TELNET позволяет обслуживающей машине рассматривать все удаленные терминалы как стандартные "сетевые виртуальные терминалы" строчного типа, работающие в коде ASCII, а также обеспечивает возможность согласования более сложных функций (например, локальный или удаленный эхо-контроль, страничный режим, высота и ширина экрана и т.д.) TELNET работает на базе протокола TCP. На прикладном уровне над TELNET находится либо программа поддержки реального терминала (на стороне пользователя), либо прикладной процесс в обсуживающей машине, к которому осуществляется доступ с терминала.

Работа с TELNET походит на набор телефонного номера. Пользователь набирает на клавиатуре что-то вроде

и получает на экране приглашение на вход в машину delta.

Протокол TELNET существует уже давно. Он хорошо опробован и широко распространен. Создано множество реализаций для самых разных операционных систем. Вполне допустимо, чтобы процесс-клиент работал, скажем, под управлением ОС VAX/VMS, а процесс-сервер под ОС UNIX System V.

Протокол FTP

Протокол FTP (File Transfer Protocol - протокол передачи файлов) распространен также широко как TELNET. Он является одним из старейших протоколов семейства TCP/IP. Также как TELNET он пользуется транспортными услугами TCP. Существует множество реализаций для различных операционных систем, которые хорошо взаимодействуют между собой. Пользователь FTP может вызывать несколько команд, которые позволяют ему посмотреть каталог удаленной машины, перейти из одного каталога в другой, а также скопировать один или несколько файлов.

Протокол SMTP

Протокол SMTP (Simple Mail Transfer Protocol - простой протокол передачи почты) поддерживает передачу сообщений (электронной почты) между произвольными узлами сети internet. Имея механизмы промежуточного хранения почты и механизмы повышения надежности доставки, протокол SMTP допускает использование различных транспотных служб. Он может работать даже в сетях, не использующих протоколы семейства TCP/IP. Протокол SMTP обеспечивает как группирование сообщений в адрес одного получателя, так и размножение нескольких копий сообщения для передачи в разные адреса. Над модулем SMTP располагается почтовая служба конкретных вычислительных систем.

r-команды

Существует целая серия "r-команд" (от remote - удаленный), которые впервые появились в ОС UNIX. Они являются аналогами обычных команд UNIX, но предназначены для работы с удаленными машинами. Например, команда rcp является аналогом команды cp и предназначена для копирования файлов между машинами. Для передачи файла на узел delta достаточно ввести

rcp file.c delta:

Для выполнения команды "cc file.c" на машине delta можно использовать комаду rsh:

rsh delta cc file.c

Для организации входа в удаленную систему предназначена команда rlogin:

Команды r-серии используются главным образом в системах, работающих под управлением ОС UNIX. Существуют также реализации для MS-DOS. Команды избавляют пользователя от необходимости набирать пароли при входе в удаленную систему и существенно облегчают работу.

Сетевая файловая система NFS (Network File System) впервые была разработана компанией Sun Microsystems Inc. NFS использует транспортные услуги UDP и позволяет монтировать в единое целое файловые системы нескольких машин с ОС UNIX. Бездисковые рабочие станции получают доступ к дискам файл-сервера так, как-будто это их локальные диски.

NFS значительно увеличивает нагрузку на сеть. Если в сети используются медленные линии связи, то от NFS мало толку. Однако, если пропускная способность сети позволяет NFS нормально работать, то пользователи получают большие преимущества. Поскольку сервер и клиент NFS реализуются в ядре ОС, все обычные несетевые программы получают возможность работать с удаленными файлами, расположенными на подмонтированных NFS-дисках, точно также как с локальными файлами.

Протокол SNMP

Протокол SNMP (Simple Network Management Protocol - простой протокол управления сетью) работает на базе UDP и предназначен для использования сетевыми управляющими станциями. Он позволяет управляющим станциям собирать информацию о положении дел в сети internet. Протокол определяет формат данных, их обработка и интерпретация остаются на усмотрение управляющих станций или менеджера сети.

X-Window

Система X-Window использует протокол X-Window, который работает на базе TCP, для многооконного отображения графики и текста на растровых дисплеях рабочих станций. X-Window - это гораздо больше, чем просто утилита для рисования окон; это целая философия человеко-машинного взаимодействия.

TCP/IP – Transmission Control Protocol / Internet Protocol (Протокол Управления Передачей Данных / Межсетевой Протокол ). Стек TCP / IP – совокупность протоколов организации взаимодействия между структурами и программными компонентами сети; представляет собой программно реализованный набор протоколов межсетевого взаимодействия.

I должен обеспечить интеграцию в составную сеть любой др. сети, независимо от технологии передачи данных этой сети.

II должен обеспечить возможность передачи пакетов через составную сеть, используя разумный (оптимальный) на данный момент маршрут.

III решает задачу обеспечения надежной передачи данных между источником и адресатом.

IV объединяет все сетевые службы и услуги, предоставляемые сетью польз-лю.

В TCP/IP достаточно хорошо развит первый уровень, соответствующий 1 и 2 уровням OSI. Второй уровень TCP/IP – IP. Также присутствует ICMP – протокол управляющих сообщений сети. IP не гарантирует надежной передачи данных. Основная задача – выбор наилучшего маршрута. Решение этой задачи IP перекладывает на RIP и OSPF протоколы. Третий уровень – TCP, основная функция – надежность и правильность доставки данных. Также используется UDP, в нем каждый пакет передается независимо. Надежность доставки данных не гарантируется, т.к. не устанавливается связь заранее. Обычно по UDP передаются данные, не критичные к надежности. 4 уровень – набор служб и услуг, предлагаемых пользователю.

Протоколы прикладного уровня.

1) Telnet – протокол удаленного доступа (эмуляция терминала). Обеспечивает подключение пользователя за неинтеллектуальным терминалом (используется крайне редко)

2) FTP – протокол передачи данных

3) SMTP – протокол передачи электронной почты

4) POP3 – почтовый протокол

5) DNS – протокол доменных имен. Устанавливает соответствие символьный адрес – IP адрес.

6) HTTP – протокол передачи гипер текста

7) Kerberos – протокол защиты информации в сетях. Отвечает за пароли и ключи.

Telnet

Telnet – это прикладной протокол стека TCP/IP, обеспечивающий эмуляцию терминалов. Терминал – это устройство, состоящее из монитора и клавиатуры и используемое для взаимодействия с хост- компьютерами (обычно мэйнфреймами или мини-компьютерами), на которых выполняются программы. Программы запускаются на хосте, поскольку терминалы, как правило, не имеют собственного процессора.

Протокол Telnet функционирует поверх TCP/IP и имеет две важные особенности, отсутствующие в других эмуляторах: он присутствует практически в каждой реализации стека TCP/IP, а также является открытым стандартом (т. е. каждый производитель или разработчик легко может, реализовать его). Для некоторых реализаций Telnet нужно, чтобы хост был сконфигурирован как Telnet-сервер. Протокол Telnet поддерживается многими рабочими станциями, работающими под управлением MS-DOS, UNIX и любых версий Windows.

File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP) и Network File System (NFS)

Стек TCP/IP содержит три протокола для передачи файлов : File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP) и Network File System (NFS). Самым распространенным протоколом является FTP, поскольку именно его чаще всего выбирают для передачи файлов пользователи Интернета. С помощью FTP можно, работая на компьютере в одном городе, подключиться к хост- компьютеру, расположенному в другом городе, и скачать один или несколько файлов. (При этом, конечно, нужно знать имя учетной записи и пароль для удаленного хоста.) Пользователи Интернета нередко с помощью FTP скачивают различные файлы (например, сетевые драйверы или обновления системы).

FTP – это приложение, позволяющее с помощью протокола TCP передать данные от одного удаленного устройства к другому. Как и в протоколе Telnet, заголовок FTP и соответствующие данные инкапсулируются в поле полезной нагрузки пакета TCP. Преимущество FTP по сравнению с протоколами TFTP и NFS заключается в том, что FTP использует два TCP-порта: 20 и 21. Порт 21 – это управляющий порт для команд FTP, которые определяют способ передачи данных. Например, команда get служит для получения файла, а команда put используется для пересылки файла некоторому хосту. FTP поддерживает передачу двоичных или текстовых (ASCII) файлов, Для чего применяются команды binary и ascii. Порт 20 служит только для Передачи данных, задаваемых командами FTP.

FTP предназначен для передачи файлов целиком, что делает его удобным средством для пересылки через глобальную сеть файлов большого размера FTP не позволяет передать часть файла или некоторые записи внутри файла. Поскольку данные инкапсулированы в пакеты TCP, коммуникации с использованием FTP являются надежными и обеспечиваются механизмом служб с установлением соединения (что подразумевает отправку подтверждения после приема пакета). При FTP- коммуникациях выполняется передача одного потока данных, в конце которого следует признак конца файла (EOF).

TFTP – это файловый протокол стека TCP/IP, предназначенный для таких задач, как передача с некоторого сервера файлов, обеспечивающих загрузку бездисковой рабочей станции. Протокол TFTP не устанавливает соединений и ориентирован на пересылку небольших файлов в тех случаях, когда появление коммуникационных ошибок не является критичным и нет особых требований к безопасности. Отсутствие соединений при работе TFTP объясняется тем, что он функционирует поверх протокола UDP (через UDP-порт 69), а не с использованием TCP. Это означает, что в процессе передачи данных отсутствуют подтверждения пакетов или не задействованы службы с установлением

соединений, гарантирующие успешную доставку пакетов в пункт назначения.

Simple Mail Transfer Protocol (SMTP)

Протокол Simple Mail Transfer Protocol (SMTP) предназначен для передачи сообщений электронной почты между сетевыми системами. С помощью этого протокола системы UNIX, OpenVMS, Windows и Novell NetWare могут пересылать электронную почту поверх протокола TCP. SMTP можно рассматривать как альтернативу протоколу FTP при передаче файла от одного компьютера к другому. При работе с SMTP не нужно знать имя учетной записи и пароль для удаленной системы. Все, что нужно, – это адрес электронной почты принимающего узла. SMTP может пересылать только текстовые файлы, поэтому файлы в других форматах должны быть конвертированы в текстовый вид, только после этого их можно поместить в SМТР-сообщение.

Domain Name System (DNS) (служба имен доменов ) представляет собой службу стека TCP/IP, преобразующую имя компьютера или домена в IP-адрес или, наоборот, конвертирующую IP-адрес в компьютерное или доменное имя. Этот процесс называется разрешением (имен или адресов). Пользователям легче запоминать имена, а не IP-адреса в десятичном представлении с разделительными точками, однако поскольку компьютерам все равно нужны IP-адреса, то должен быть способ преобразования одного способа адресации в другой. Для этого служба DNS использует таблицы просмотра, в которых хранятся пары соответствующих значений.

Dynamic Host Configuration Protocol (DHCP)

Протокол Dynamic Host Configuration Protocol (DHCP ) (Протокол динамически конфигурации хоста) позволяет автоматически назначать в сети 1Р-адреса с помощью DHCP-сервера. Когда новый компьютер, настроенный на работу с DHCP, подключается к сети, он обращается к DHCP-серверу, который выделяет (сдает в аренду) компьютеру IP-адрес, передавая его посредством протокола DHCP. Длительность аренды устанавливается на DHCP-сервере сетевым администратором.

Address Resolution Protocol (ARP)

В большинстве случаев для отправки пакета принимающему узлу отправитель должен знать как IP-адрес, так и МАС-адрес. Например, при групповых передачах используются оба адреса (IP и MAC). Эти адреса не моя совпадать и имеют разные форматы (десятичный с разделительными точками и шестнадцатеричный соответственно).

Address Resolution Protocol (ARP) (Протокол разрешения адресов) позволяет передающему узлу получить МАС-адреса выбранного принимающего узла перед отправкой пакетов. Если исходному узлу нужен некоторый МАС-адрес, то он посылает широковещательный ARP-фрейм, содержащий свой собственный МАС-адрес и IP-адрес требуемого принимающего узла. Принимающий узел отправляет обратно пакет ARP-ответа, содержащий свой МАС-адрес. Вспомогательным протоколом является Reverse Address Resolution Protocol (RARP) (Протокол обратного разрешения имен), с помощью которого сетевой узел может определить свой собственный IP-адрес. Например, RARP используется бездисковыми рабочими станциями, которые не могут узнать свои адреса иначе как выполнив RARP-запрос к своему хост-серверу. Кроме того, RARP используется некоторыми приложениями для определения IP-адреса того компьютера, на котором он выполняются.

Simple Network Management Protocol (SNMP) (Простой протокол сетевого управления) позволяет администраторам сети непрерывно следить за активностью сети. Протокол SNMP был разработан в 1980-х годах для того, чтобы снабдить стек TCP/IP механизмом, альтернативным стандарту OSI на управление сетями – протоколу Common Management Interface Protocol (CMIP) (Протокол общей управляющей информации). Хотя протокол SNMP был создан для стека TCP/IP, он соответствует эталонной модели OSI. Большинство производителей предпочли использовать SNMP, а не CMIP, что объясняется большой популярностью протоколов TCP/IP, а также простотой SNMP. Протокол SNMP поддерживают многие сотни сетевых устройств, включая файловые серверы, карты сетевых адаптеров, маршрутизаторы, повторители, мосты, коммутаторы и концентраторы. В сравнении с этим, протокол CMIP применяется компанией IBM в некоторых сетях с маркерным кольцом, однако во многих других сетях он не встречается.