О связи и современных технологиях. Защита от прослушивания разговоров — строим безопасную SIP телефонию своими руками

Практические аспекты защиты корпоративной сети IP-телефонии

С IP-телефонией, как и любой новой технологией, связано множество различных мифов, слухов и домыслов, мешающих ее повсеместному распространению. Многие из них касаются безопасности IP-телефонии. Апологеты традиционной телефонии утверждают, что коль скоро в технологии VoIP в качестве среды передачи используется протокол IP, то к ней применимы и все сетевые атаки, а следовательно, IP-среда для передачи голосового трафика не подходит. С одной стороны, они правы: атаки действительно возможны. Однако аналогичные атаки (прослушивание, фальсификация абонента и другие) применимы и к традиционной телефонии (см. врезку "Стоимость перехвата информации..."). Более того, в случае с традиционной телефонией реализовать эти атаки гораздо проще, а обнаружить и локализовать - намного сложнее. А по стоимости защиты обычные телефонные переговоры отличаются от более современной IP-телефонии на несколько порядков (в худшую сторону). Но, конечно же, чтобы новая технология позволила обмениваться звонками защищенным образом, ее необх одимо правильно внедрить и настроить.

Стоимость перехвата информации

Купить телефонный жучок, радиозакладку или иное устройство съема информации можно на любом радиорынке и даже в Интернет-магазине: нижняя ценовая планка 10-30 дол. (но без гарантии качества). В детективном агентстве такое устройство предложат в аренду за 20-50 дол. плюс залоговая стоимость жучка (хотя эта деятельность и является незаконной). А заказ "прослушки" профессионалам обойдется всего в 50-100 дол. в час. Еще одно удобство для злоумышленников представляет тот факт, что во многих случаях радиозакладки не требуют дополнительных источников питания и тем более их замены, так как "питаются" от самой телефонной линии. Да и сами телефонные линии представляют потенциальную угрозу, поскольку могут использоваться для прослушивания помещений, через которые проходят, за счет различных электромагнитных наводок и излучений.
Про каждый из стандартов и протоколов IP-телефонии (Н.323, SIP, MGCP, Skinny) можно написать не одну статью, но это не входит в задачи данной публикации. Описание механизмов защиты самих протоколов передачи голоса поверх IP (например, протокол Н.235 или SRTP), представляющих собой неотъемлемую часть голосовой инфраструктуры, также не является целью этого обзора. Если начать говорить об общих принципах работы IP-телефонии, то до темы ее защиты можно никогда не добраться. Таким образом, в данной статье будет описан ряд практических аспектов, связанных с защищенным использованием "последовательницы" традиционной телефонии.

Разделение сети на сегменты
Главное, что необходимо сделать при построении инфраструктуры IP-телефонии, - отделить ее от сегментов, в которых передаются обычные данные (файлы, электронная почта и т.д.). Это можно сделать как с помощью технологии виртуальных локальных сетей (VLAN), так и с помощью межсетевых экранов (МЭ). Первый вариант более эффективен и не требует никаких дополнительных инвестиций, так как механизм VLAN реализован в большинстве коммутаторов. Подобная сегментация позволит создать дополнительный рубеж, предупреждающи й прослушивание переговоров обычными пользователями.
Хорошей практикой является использование отдельного адресного пространства для сегментов IP-телефонии (например, из диапазонов, указанных в RFC 1918). Если сеть, передающая голос поверх протокола IP, имеет достаточно большие масштабы, то в ней не обойтись без динамической адресации по протоколу DHCP. В этом случае необходимо использовать два DHCP-сервера: один для голосовой сети, а второй для сети данных.

Фильтрация и контроль доступа
Голосовые шлюзы (Voice Gateway), подключенные к телефонной сети общего пользования (ТфОП), должны отвергать все протоколы IP-телефонии (Н.323, SIP и другие), приходящие из сегмента данных корпоративной сети. Зачастую поддержка протоколов IP-телефонии реализуется в маршрутизаторах с интеграцией сервисов (Integrated Services Router), что позволяет сэкономить на оборудовании, обеспечивая при этом поддержку самых современных технологий. В этом случае встроенный в маршрутизатор пакетный фильтр с контролем состояни я может отслеживать любые нарушения в голосовом обмене и, например, блокировать пакеты, которые не являются частью процедуры установления вызова. Помимо встроенных в компоненты IP-телефонии механизмов фильтрации и контроля доступа существуют и специальные решения, защищающие элементы голосовой инфраструктуры от возможных несанкционированных воздействий. К таким решениям относятся межсетевые экраны (МЭ), шлюзы прикладного уровня (Application Layer Gateway, ALG) и специализированные пограничные контроллеры (Session Border Controller).

Выбор межсетевого экрана
Для защиты сети IP-телефонии подходит не всякий межсетевой экран - он должен удовлетворять ряду специфичных требований, присущих именно этой технологии передачи голоса. Например, протокол передачи голосовых данных RTP использует динамические UDP-порты, исчисляемые тысячами. Попытка разрешить их все на межсетевом экране приводит к открытию одной большой "дыры" в защите. Следовательно, межсетевой экран должен также динамически определять используемые для связи п орты, открывать их в начале телефонного разговора и закрывать по его окончании.
Вторая особенность заключается в том, что ряд протоколов, например SIP, помещает информацию об используемых параметрах соединения не в заголовок пакета, а в тело данных. Поэтому обычный пакетный фильтр, исследующий только адреса и порты получателя и отправителя, а также тип протокола, в данном случае будет абсолютно бесполезным. Межсетевой экран должен уметь анализировать не только заголовок, но и тело данных пакета, вычленяя из него всю необходимую для организации соединения информацию.

Прикладные шлюзы и пограничные контроллеры
Другая серьезная проблема, решение которой необходимо продумать до приобретения межсетевого экрана, - трансляция сетевых адресов (Network Address Translation, NAT). Коль скоро при установке вызова используются динамические порты, указанные в запросе на установление соединения между абонентами, то технология скрытия топологии сети путем трансляции адресов делает телефонные переговоры нево зможными. Решением проблемы является использование специальных прикладных шлюзов (ALG), выпускаемых в виде выделенных устройств или интегрированных в межсетевые экраны, "понимающие" протоколы с динамическими портами (например, SIP или RTCP). Некоторые производители выпускают только специализированные защитные шлюзы для обработки VoIP-трафика. Но при их выборе следует помнить, что в защите корпоративной сети все равно не обойтись без обычного МЭ, умеющего анализировать не только протоколы Н.323, SIP и MGCP, но и другие распространенные в сетях протоколы: HTTP, FTP, SMTP, SQL*Net и т.д.
Ряд производителей предлагают решение проблемы защиты путем использования специализированных пограничных контроллеров (SBC). По сути, эти устройства во многом аналогичны описанным выше прикладным шлюзам.

Защита от подмены
Динамическая адресация во многих элементах инфраструктуры IP-телефонии дает злоумышленникам большой простор для деятельности: они могут "выдать" свой IP-адрес за IP-телефон, сервер управления звонками и т.д. А значит, перед администратором сети возникает задача аутентификации всех участников телефонных переговоров. Для этого необходимо использовать различные стандартизированные протоколы, включая 802.lx, RADIUS, сертификаты PKI Х.509 и т.д. И, конечно, нельзя сбрасывать со счетов уже упомянутые выше правила контроля доступа на маршрутизаторах и МЭ, усложняющие злоумышленникам задачу подключения к голосовым сегментам.
Указанные методы позволяют эффективно бороться с "левыми" подключениями, в отличие от традиционной телефонии, где эта задача если и решается, то очень дорогостоящими средствами.

Шифрование
Шифрование - наиболее эффективный способ сохранить телефонные переговоры в тайне (см. врезку "Скремблеры и вокодеры..."). Однако такая функциональность влечет за собой ряд сложностей, которые необходимо обязательно учитывать при построении защищенной сети связи.

Скремблеры и вокодеры для защиты традиционной телефонии
Среди средств защиты особняком стоят вокодеры (voice coder) и скремблеры, которые осуществляют шифрование телефонных переговоров. Очевидно, что такие устройства должны быть установлены у всех участников защищенных переговоров. Механизм шифрования встраивается в телефон или поставляется в виде отдельного устройства. В первом случае абонентский терминал становится слишком дорогим (и приходится отказываться от многофункциональных и удобных телефонных аппаратов зарубежного производства), во втором - практически полностью отсутствует возможность масштабирования, и пользование телефоном становится крайне неудобным. Оснастить каждого абонента скремблером или вокодером - задача не из легких. При этом вопрос стоимости также не снимается: цена одного скремблера колеблется от 200 до 500 дол. Если прибавить сюда цену телефонного аппарата и стоимость установки защитных устройств, получатся поистине астрономические цифры. Так что такой способ защиты традиционной телефонии нельзя считать экономичным.
Одна из самых главных проблем - задержка, добавляемая процессом зашифр ования/расшифрования. В случае применения потокового шифрования задержка гораздо ниже, чем при использовании блочных шифров, но полностью от нее избавиться не удастся. Эта проблема решается путем использования более быстрых алгоритмов или включения механизмов QoS в модуль шифрования.
Еще одна трудность - накладные расходы, связанные с увеличением длины передаваемых пакетов. Для протокола IPSec размер добавляемого заголовка составляет около 40 байт, что достаточно много для 50-70-байтовых пакетов IP-телефонии. Впрочем, скорости современных сетей постоянно растут, и с течением времени эта проблема будет снята. А пока оптимальным решением обеих проблем является протокол SecureRTP (SRTP), принятый в качестве стандарта весной 2004г. (RFC 3711).

Защита от нарушения работоспособности

Несмотря на то что различные компоненты IP-телефонии потенциально подвержены атакам "отказ в обслуживании" (о сбоях в традиционной телефонии см. врезку "Перемаршрутизация звонков..."), существует целый ряд защитных мер, предотвращающих как сами DoS-атаки, так и их последствия. Для этого можно использовать встроенные в сетевое оборудование механизмы обеспечения информационной безопасности, а также дополнительные решения:
разделение корпоративной сети на непересекающиеся сегменты передачи голоса и данных, что предотвращает появление в "голосовом" участке распространенных атак, в том числе и DoS;
применение специальных правил контроля доступа на маршрутизаторах и МЭ, защищающих периметр корпоративной сети и отдельные ее сегменты;
использование системы предотвращения атак на сервере управления звонками и ПК с голосовыми приложениями;
установку специализированных систем защиты от DoS- и DDoS-атак;
«применение специальных настроек на сетевом оборудовании, которые предотвращают подмену адреса, часто используемую при DoS-атаках, и ограничивают полосу пропускания, не позволяя вывести из строя атакуемые ресурсы большим потоком бесполезного трафика.

Перемаршрутизация звонков в традиционной телефонии
Еще од на угроза - перемаршрутизация звонков на другие телефонные номера, сброс собеседника с линии или "прорыв" сигнала "занято". Например, в 1989 г. хакерская группа The Legion of Doom получила контроль над телефонной сетью компании BellSouth, включая возможность прослушивания телефонных каналов связи, перемаршрутизацию вызовов, маскировку под технический персонал станции и даже вывод из строя системы экстренной связи 911. Для расследования этого инцидента были приглашены 42 эксперта, а затраты BellSouth на их работу составили 1,5 млн дол. И это не считая потери репутации и других трудно вычисляемых потерь.

Управление
Для удаленного управления использование защищенных протоколов доступа (например, SSH) является обязательным (в данном случае шифрование вносит гораздо меньше задержек, чем при шифровании голосовых данных). Если же доступ к какому-либо компоненту сети IP-телефонии осуществляется по обычному протоколу (например, по HTTP), то непременным условием такого доступа должно быть применение протоко ла IPSec или SSL. В противном случае любой злоумышленник сможет не только перехватывать все данные с незащищенным элементом, но и подменять их.
Если требование криптографии вступает в конфликт с производительностью, то шифрованием на IP-телефонах или голосовых приложениях на ПК можно пренебречь. Если, конечно, к сети не применяются законодательные требования защиты всей конфиденциальной информации (включая и телефонные разговоры). Например, такое требование для всех федеральных структур США прописано в секции 5131 американского закона Information Technology Management Reform Act of 1996.
При отказе от скрытия голосового трафика его необходимо в обязательном порядке отделить от всех остальных типов передаваемых данных с помощью VLAN. При этом передача голоса между офисами должна быть защищена с помощью криптографических преобразований. Для этих целей можно задействовать встроенный в маршрутизаторы механизм IPSec VPN или установить отдельные шифраторы, сертифицированные в ФСБ России.

Организационные вопросы
Основная проблема безопасности IP-телефонии - не динамически открываемые порты на межсетевом экране, не NAT и не снижение качества голоса в результате шифрования. Все эти вопросы давно и эффективно решаются. Главная беда - "в головах", как говорил профессор Преображенский в "Собачьем сердце", а точнее, в недооценке существующих рисков и в непонимании новых технологий. Например, во многих организациях и компаниях существует классификатор конфиденциальной информации, обрабатываемой в автоматизированной системе. Но только в немногих организациях классифицируются еще и голосовые данные, передаваемые в рамках инфраструктуры IP-телефонии. А между тем информация, не включенная в такой классификатор, находится вне зоны внимания службы информационной безопасности и оказывается совершенно не защищенной.

Заключение
В опубликованном годовом отчете IBM "Security Threats and Attack Trends Report" приведен анализ основных угроз года прошедшего и дается прогноз на 2005 г. По мнению экспертов IBM, увеличение числа сетей IP-телефонии приведет к росту угроз для их существования и бесперебойного функционирования. Поэтому обеспокоиться защитой внедряемой или уже внедренной инфраструктуры IP-телефонии необходимо именно сейчас, чтобы позже не "кусать себе локти". И это не так трудно, как кажется на первый взгляд. Существуют технологии, значительно повышающие защищенность VoIP, и они давно известны специалистам по информационной безопасности. Более того, эти технологии зачастую уже внедрены в компоненты, применяемые в построении среды передачи голоса поверх протокола IP. А значит, надо просто воспользоваться ими.

По материалам ИА "Daily Sec".

Спецификацией IETF, где описаны стандартные методы для всех компонентов VPN, является протокол Internet Protocol Security, или IPSec, - иногда его называют туннелирова-нием третьего уровня (Layer-3 Tunneling). IPSec предусматривает стандартные методы идентификации пользователей или компьютеров при инициации туннеля, стандартные способы использования шифрования конечными точками туннеля, а также стандартные методы обмена и управления ключами шифрования между конечными точками. Этот гибкий стандарт предлагает несколько способов для выполнения каждой задачи. Выбранные методы для одной задачи обычно не зависят от методов реализации других задач. Идентификацию можно выполнять с помощью спецификации IPSec, причем она является обязательным компонентом протокола IPv6.

IPSec может работать совместно с L2TP, в результате эти два протокола обеспечивают более надежную идентификацию, стандартизованное шифрование и целостность данных. Следует отметить, что спецификация IPSec ориентирована на IP и, таким образом, бесполезна для трафика любых других протоколов сетевого уровня. Туннель IPSec между двумя локальными сетями может поддерживать множество индивидуальных каналов передачи данных, в результате чего приложения данного типа получают преимущества с точки зрения масштабирования по сравнению с технологией второго уровня.

Некоторые поставщики VPN используют другой подход под названием «посредники каналов» (circuit proxy), или VPN пятого уровня. Этот метод функционирует над транспортным уровнем и ретранслирует трафик из защищенной сети в общедоступную сеть Internet для каждого сокста в отдельности. (Сокет IP идентифицируется комбинацией TCP-соединения и конкретного порта или заданным портом UDP. Протокол IP не имеет пятого - сеансового -уровня, однако ориентированные на сокеты операции часто называют операциями сеансового уровня).

Шифрование информации, передаваемой между инициатором и терминатором туннеля, часто осуществляется с помощью защиты транспортного уровня (Transport Layer Security, TLS), ранее протокола защищенных сокетов (Secure Sockets Layer, SSL). Для стандартизации аутентифицированного прохода через брандмауэры IETF определил протокол под названием SOCKS, и в настоящее время SOCKS 5 применяется для стандартизованной реализации посредников каналов.

В SOCKS 5 клиентский компьютер устанавливает аутентифицированный сокет (или сеанс) с сервером, выполняющим роль посредника (proxy). Этот посредник - единственный способ связи через брандмауэр. Посредник, в свою очередь, проводит любые операции, запрашиваемые клиентом. Поскольку посреднику известно о трафике на уровне сокета, он может осуществлять тщательный контроль, например, блокировать конкретные приложения пользователей, если они не имеют необходимых полномочий. Для сравнения, виртуальные частные сети уровня 2 и 3 обычно просто открывают или закрывают канал для всего трафика по аутентифицированному туннелю. Это может представлять проблему, если нет гарантии защиты информации на другом конце туннеля.

Следует отметить на наличие взаимосвязи между брандмауэрами и VPN. Если туннели завершаются на оборудовании провайдера Интернет, то трафик будет передаваться по вашей локальной сети или по линии связи с провайдером Интернет в незащищенном виде. Если конечная точка расположена за брандмауэром, то туннелируемый трафик можно контролировать с помощью средств контроля доступа брандмауэра, но никакой дополнительной защиты при передаче по локальной сети это не даст. В этом случае конечную точку будет связывать с брандмауэром незащищенный канал.

Расположение конечной точки внутри защищаемой брандмауэром зоны обычно означает открытие прохода через брандмауэр (как правило, через конкретный порт TCP). Некоторые компании предпочитают применять реализуемый брандмауэром контроль доступа ко всему трафику, в том числе и к туннелируемому, особенно если другую сторону туннеля представляет пользователь, стратегия защиты которого неизвестна или не внушает доверия. Одно из преимуществ применения тесно интегрированных с брандмауэром продуктов тунне-лирования состоит в том, что можно открывать туннель, применять к нему правила защиты брандмауэра и перенаправлять трафик на конечную точку на конкретном компьютере или в защищаемой брандмауэром подсети.

Как и любая другая вычислительная функция, работа по созданию сетей VPN проводится с помощью программного обеспечения. Между тем программное обеспечение для VPN может выполняться на самых разных аппаратных платформах. Маршрутизаторы или коммутаторы третьего уровня могут поддерживать функции VNP по умолчанию (или в качестве дополнительной возможности, предлагаемой за отдельную плату). Аппаратно и программно реализуемые брандмауэры нередко предусматривают модули VPN со средствами управления трафиком или без них. Некоторые пограничные комбинированные устройства включают в себя маршрутизатор, брандмауэр, средства управления пропускной способностью и функции VPN (а также режим конфигурации). Наконец, ряд чисто программных продуктов выполняется на соответствующих серверах, кэширует страницы Web, реализует функции брандмауэра и VPN.

Механизм VPN немыслим без идентификации. Инфраструктура с открытыми ключами (Public Key Infrastructure, PKI) для электронной идентификации и управления открытыми ключами является в настоящее время основной. Данные PKI целесообразнее всего хранить в глобальном каталоге, обращаться к которому можно по упрощенному протоколу доступа к каталогу (Lightweight Directory Access Protocol, LDAP).

Осталось в прошлом то время, когда операторы с опасением относились к использованию IP-телефонии, считая уровень защищенности таких сетей низким. Сегодня уже можно говорить о том, что IP-телефония стала неким стандартом де-факто в телефонных коммуникациях. Это объясняется удобством, надежностью и относительно невысокой стоимостью IP-телефонии по сравнению с аналоговой связью. Можно утверждать, что IP-телефония повышает эффективность ведения бизнеса и позволяет осуществлять такие ранее недоступные операции, как интеграция с различными бизнес-приложениями.

Если говорить о недостатках и уязвимостях IP-телефонии, прежде всего следует отметить те же «болезни», какими страдают другие службы, использующие протокол IP. Это подверженность атакам червей и вирусов, DoS-атакам, несанкционированному удаленному доступу и др. Несмотря на то, что при построении инфраструктуры IP-телефонии данную службу обычно отделяют от сегментов сети, в которых «ходят» не голосовые данные, это еще не является гарантией безопасности. Сегодня большое количество компаний интегрируют IP-телефонию с другими приложениями, например с электронной почтой. С одной стороны, таким образом появляются дополнительные удобства, но с другой — и новые уязвимости. Кроме того, для функционирования сети IP-телефонии требуется большое число компонентов, таких, как серверы поддержки, коммутаторы, маршрутизаторы, межсетевые экраны, IP-телефоны и т. д. При этом для поддержки функционирования IP-сети часто используются неспециализированные ОС. К примеру, большинство IP-УАТС построено на базе обычных и хорошо известных операционных систем (Windows или Linux), которые теоретически обладают всеми уязвимостями, характерными для данных систем.

В некоторых IP-УАТС применяется СУБД и веб-серверы, имеющие свои элементы уязвимостей. И хотя для универсальной операционной системы или стека протоколов можно использовать давно известные средства защиты — антивирусы, персональные межсетевые экраны, системы предотвращения атак и т. п., отсутствие «заточенности» таких средств под работу с приложениями IP-телефонии может негативно сказаться на уровне защищенности.

Среди основных угроз, которым подвергается IP-телефонная сеть, можно выделить:

  • регистрацию чужого терминала, позволяющую делать звонки за чужой счет;
  • подмену абонента;
  • внесение изменений в голосовой или сигнальный трафик;
  • снижение качества голосового трафика;
  • перенаправление голосового или сигнального трафика;
  • перехват голосового или сигнального трафика;
  • подделка голосовых сообщений;
  • завершение сеанса связи;
  • отказ в обслуживании;
  • удаленный несанкционированный доступ к компонентам инфраструктуры IP-телефонии;
  • несанкционированное обновление ПО на IP-телефоне (например, с целью внедрения троянской или шпионской программы);
  • взлом биллинговой системы (для операторской телефонии).

Это далеко не весь перечень возможных проблем, связанных с использованием IP-телефонии. Альянс по безопасности VoIP (VOIPSA) разработал документ, описывающий широкий спектр угроз IP-телефонии, который помимо технических угроз включает вымогательство через IP-телефонию, спам и т. д.

И все же основное уязвимое место IP-телефонии — это набивший оскомину человеческий фактор. Проблема защищенности при развертывании IP-телефонной сети часто отодвигается на задний план, и выбор решения проходит без участия специалистов по безопасности. К тому же специалисты не всегда должным образом настраивают решение, даже если в нем присутствуют надлежащие защитные механизмы, либо приобретаются средства защиты, не предназначенные для эффективной обработки голосового трафика (например, межсетевые экраны могут не понимать фирменный протокол сигнализации, использующийся в решении IP-телефонии). В конце концов, организация вынуждена тратить дополнительные финансовые и людские ресурсы для защиты развернутого решения либо мириться с его незащищенностью.

Что же строить?

Не будет открытием и то, что чем надежнее защищена IP-телефонная сеть, тем меньше вероятность взлома и злоупотреблений в такой сети. Прозвучит банально, но думать об обеспечении безопасности необходимо уже на этапе подготовки проекта IP-телефонии и именно на этом этапе необходимо договориться о том, какие механизмы защиты целесообразнее использовать в сети. Будет ли это набор встроенных механизмов? А может, особенности функционирования данной IP-сети таковы, что необходимы дополнительные и «навесные» средства защиты?

С точки зрения управляемости и производительности наиболее предпочтительной кажется такая архитектура IP-телефонии, где все компоненты защиты встроены в элементы самой сети. Если рассматривать IP-телефонную сеть без использования дополнительных средств защиты, то, применяя встроенные в сетевые коммутаторы защитные механизмы, можно добиться построения относительно стойкой защиты от атак на периметр. Встроенный функционал позволяет обеспечить:

  • возможность создания виртуальных локальных сетей (VLAN) с использованием встроенных возможностей коммутаторов;
  • применение встроенных механизмов фильтрации и контроля доступа;
  • ограничение и представление гарантируемой полосы пропускания, что позволяет эффективно подавлять DoS-атаки;
  • ограничение числа устройств с различными MAC-адресами, подключенными к одному порту;
  • предотвращение атак на расходование пула адресов DHCP-сервиса;
  • предотвращение засорения таблиц ARP и «воровство» адресов;
  • предотвращение атак с анонимных адресов;
  • применение списков контроля доступа, ограничивающих адреса узлов, которые могут передавать данные IP-телефонам.

Кроме того, встроенная в архитектуру IP-сети система управления вызовами, которая может подключаться к специальной выделенной локальной сети, изолированной от рабочей сети организации, представляет собой дополнительный «рубеж» в защите. К недостаткам можно отнести то, что встроенные в сетевое оборудование защитные функции не всегда обеспечивают надлежащий уровень безопасности и для его поднятия могут потребоваться дополнительные вложения в модернизацию оборудования.

Несмотря на использование в основе своей протокола IP, IP-телефония далеко не всегда может быть адекватно защищена традиционными решениями. Связано это с тем, что они не учитывают ее специфики — передачи трафика в реальном времени, контроля качества и трафика на прикладном уровне и т. д. Идеально, когда приложения IP-телефонии и их безопасность неразрывно связаны и интегрированы между собой в единую платформу, включающую и сетевую инфраструктуру. Это позволяет повысить эффективность защиты и снизить издержки на нее. В противном случае приходится строить четыре независимых или практически непересекающиеся инфраструктуры: ЛВС, IP-телефонная сеть, безопасность ЛВС и инфраструктура безопасности IP-телефонии.

Применение специализированных межсетевых экранов значительно повышает безопасность IP-телефонной сети, например, при помощи фильтрации трафика с учетом состояния соединения (stateful inspection ), что позволяет пропускать только необходимый трафик и соединения, установленные в определенном направлении (от сервера к клиенту или наоборот). Кроме того, межсетевой экран предоставляет возможности по:

  • фильтрации трафика управления установкой IP-телефонных соединений;
  • передаче трафика управления через NAT и сетевые туннели;
  • TCP-перехвату, который обеспечивает проверку закрытия TCP-сессий, что позволяет защищаться от ряда атак типа отказа в обслуживании (DoS).

При проектировании сети, в которой предполагается использование дополнительных средств защиты, например системы обнаружения или предотвращения атак, следует особое внимание уделить выбору производителя таких средств, поскольку вопрос об управлении гетерогенной IP-сетью не всегда может быть решен эффективно и быстро и практически всегда требует серьезных дополнительных вложений.

Предпочтителен выбор того производителя, на оборудовании которого уже функционирует сеть, так как поддержку и управление устройствами можно осуществлять в этом случае централизованно и с меньшими затратами.

Защита от прослушивания

Виртуальные ЛВС снижают в известной степени риск прослушивания телефонных разговоров, однако в случае перехвата речевых пакетов анализатором восстановление записи разговора для специалиста дело нехитрое. Главным образом, виртуальные ЛВС способны обеспечить защиту от внешних вторжений, но защитить от атаки, инициированной изнутри сети, могут быть не способны. Человек, находящийся внутри периметра сети, может подключить компьютер прямо к разъему настенной розетки, сконфигурировать его как элемент виртуальной ЛВС системы IP-телефонии и начать атаку.

Наиболее совершенный способ противодействия подобным манипуляциям — использование IP-телефонов со встроенными средствами шифрования. Кроме того, дополнительную защиту обеспечивает шифрование трафика между телефонами и шлюзами. На сегодняшний день практически все производители, такие как Avaya, Nortel и Cisco, предлагают встроенные средства шифрования для информационных потоков и сигнализации. Шифрование трафика является наиболее логичным решением для защиты от прослушивания разговоров, но такая функциональность несет и ряд трудностей, которые необходимо учитывать при построении защищенной связи. Основной проблемой может быть задержка, добавляемая процессом зашифровывания и расшифровывания трафика. При работе в локальной сети подобная проблема, как правило, не дает о себе знать, но при связи через территориально-распределенную сеть способна доставлять неудобства. К тому же шифрование сигнализации, происходящее на прикладном уровне, может затруднить работу межсетевых экранов. В случае применения потокового шифрования задержки гораздо ниже, чем при использовании блочных шифров, хотя полностью от них избавиться не удастся. Вариантом решения проблемы могут служить более быстрые алгоритмы или включение механизмов QoS в модуль шифрования.

QoS

Принято считать, что основное назначение механизмов QoS (Quality of Service ) — обеспечение должного качества связи. Но не стоит забывать, что они играют важнейшую роль и при решении задач безопасности. Для передачи речи и данных из логически отдельных виртуальных ЛВС используется общая физическая полоса пропускания. При заражении узла вирусом или червем может произойти переполнение сети трафиком. Однако если прибегнуть к механизмам QoS, настроенным соответствующим образом, трафик IP-телефонии будет попрежнему иметь приоритет при прохождении через общие физические каналы, и DoS-атака окажется безуспешной.

Защита от подмены телефонов и серверов управления

Многие элементы IP-телефонии имеют динамическую адресацию, что позволяет злоумышленникам использовать это в своих целях. Они могут «выдать себя» за IP-телефон, сервер управления звонками и т. д. Для защиты от устройств, пытающихся замаскироваться под авторизованные IP-телефоны или несанкционированно подключенных к сетевой инфраструктуре, можно воспользоваться правилами контроля доступа на маршрутизаторах и межсетевых экранах. Кроме того, могут пригодиться средства строгой аутентификации всех абонентов инфраструктуры IP-телефонии. Для подтверждения подлинности абонентов могут применяться различные стандартизированные протоколы, включая RADIUS, сертификаты PKI x.509 и т. д.

Защита от DoS-атак

Атаки типа «отказ в обслуживании» на приложения IP-телефонии (например, на серверы обработки звонков) и среду передачи данных представляют собой довольно серьезную проблему. Если говорить об атаках на среду передачи данных, отметим, что за передачу данных в IP-телефонии, как правило, отвечает протокол RTP (Real-Time Protocol ). Он уязвим для любой атаки, которая перегружает сеть пакетами или приводит к замедлению процесса их обработки конечным устройством (телефоном или шлюзом). Следовательно, злоумышленнику достаточно «забить» сеть большим количеством RTP-пакетов либо пакетов с высоким приоритетом обслуживания, которые будут конкурировать с легитимными RTP-пакетами. В таком случае для защиты можно использовать как встроенные в сетевое оборудование механизмы обеспечения информационной безопасности, так и дополнительные решения:
  • разделение корпоративной сети на непересекающиеся сегменты передачи голоса и данных, что предотвращает появление в «голосовом» участке распространенных атак, в том числе и DoS;
  • специальные правила контроля доступа на маршрутизаторах и межсетевых экранах, защищающих периметр корпоративной сети и отдельные ее сегменты;
  • систему предотвращения атак на сервере управления звонками и ПК с голосовыми приложениями;
  • специализированные системы защиты от DoS- и DDoS-атак;
  • специальные настройки на сетевом оборудовании, предотвращающие подмену адреса и ограничивающие полосу пропускания, не позволяющую вывести из строя атакуемые ресурсы большим потоком бесполезного трафика.

Защита IP-телефонов

IP-телефоны содержат целый ряд специальных настроек, препятствующих несанкционированному доступу к ним. К таким настройкам относятся, например, доступ к функциям телефона только после предъявления идентификатора и пароля или запрет локального изменения настроек и т. д. С целью предотвращения загрузки на IP-телефон несанкционированно модифицированного программного обеспечения и конфигурационных файлов, их целостность может контролироваться цифровой подписью и сертификатами X.509.

Защита от мошенничества в IP-телефонной сети

Среди основных типов мошенничества, встречающегося в IP-телефонной сети, можно отметить кражу услуг, фальсификацию звонков, отказ от платежа и другие виды. Защититься от мошенничества в сетях IP-телефонии можно, используя возможности сервера управления IT-инфраструктурой. Так, для каждого абонента можно заблокировать звонки на определенные группы номеров; заблокировать звонки с нежелательных номеров; заблокировать возможность переадресации звонков на различные типы номеров — городские, мобильные, междугородные и международные; отфильтровать звонки по различным параметрам. Все действия могут осуществляться независимо от того, с какого телефонного аппарата абонент осуществляет звонок, — это реализуется путем аутентификации каждого абонента, получающего доступ к IP-телефону. В случае если пользователь не проходит процесс подтверждения своей подлинности, он может звонить только по заранее определенному списку номеров, например, только по внутренним номерам телефонов и в экстренные муниципальные службы.

Стандарты в IP-телефонии

Сегодня протокол SIP приходит на смену протоколам H.323, при этом многие разработчики устройств, поддерживающих SIP, фокусируют свои силы на увеличении числа функций, а не на безопасности. В отличие от стандарта H.323, в рамках которого разработана спецификация H.235, описывающая различные механизмы безопасности, протокол SIP практически лишен каких бы то ни было серьезных защитных функций. Это заставляет сомневаться в безоблачном будущем IP-телефонии, которое многие эксперты связывают именно с протоколом SIP. Определенные надежды возлагаются на сформированный в июле 2005 года альянс по безопасности IP-телефонии , целью которого является проведение исследований, повышение осведомленности, обучение и разработка бесплатных методик и инструментов для тестирования в области защищенности IP-телефонии. Но пока единственным результатом работы данного альянса стало создание таксономии атак и уязвимых мест IP-телефонии.

Заключение

В заключение хотелось бы еще раз отметить, что основной постулат эффективной системы безопасности IP-телефонии — на этапе проектирования думать о том, каким образом будет строиться система защиты такой сети, с целью максимального соответствия особенностям IP-коммуникаций в организации. Не следует забывать и о том, что IP-телефония — это приложение, которое работает в IP-сети, и адекватные меры по защите IP-сети в целом лишают злоумышленника дополнительных возможностей по организации прослушивания, реализации DoS-атак и использованию ресурсов сети в качестве лазейки в IP-телефонную сеть.

Среди первоочередных требований к обеспечению безопасности IP-телефонной сети следует назвать необходимость разделения голосовых и обычных данных. То есть IP-телефония должна быть отделена от сети, где передаются другие данные при помощи VLAN. Сегментация позволяет создать дополнительный рубеж, предупреждающий атаки и злоупотребления, в том числе и те, источник которых находится во внутренней сети. Кроме того, при проектировании IP-телефонной сети важно обеспечить соответствующую полосу пропускания и не забывать о применении механизмов QoS для приоритизации IP-телефонного трафика.

И наконец, использование средств защиты, ориентированных на особенности работы IP-телефонии, поможет избежать не только «дыр» в безопасности построенной сети, таких как «непонимание» средствами защиты IP-трафика, но и дополнительных финансовых расходов на модернизацию существующего оборудования или приобретение новых защитных устройств.

IP-телефония? Ее тоже атакуют!

Принцип действия

Принцип действия технологии IP-телефонии прост. Центральным ее компонентом является сервер (шлюз), который отвечает за соединение телефонной и IP сетей, т.е. он подключен как к телефонной сети и может дозвониться до любого обычного телефона, так и к сети передачи данных (например, Internet) и может получить доступ к любому компьютеру. В функции данного устройства входят:

    Ответ на вывоз вызывающего абонента

    Установление соединение с удаленным шлюзом и вызываемым абонентом

    Оцифровка (кодирование), сжатие, разбиение на пакеты и восстановление сигнала

Данный шлюз (например, Cisco Catalyst 4000 Access Gateway Module или Cisco VG200) на вход принимает обычный телефонный сигнал, оцифровывает его (если сигнал не цифровой) и проводит сжатие полученных данных, после чего передает в IP-сеть в виде обычных пакетов (но не очень большого размера). На другом конце шлюз восстанавливает сигнал в обратном порядке. Данный компонент может и не использоваться, если вы не планируете интегрировать свои IP-телефоны в телефонную сеть общего пользования (см. рис.1).

Для того чтобы можно было построить распределенную сеть IP-телефонии необходимо наличие диспетчера, который отвечает за распределение вызовов между шлюзами (например, Cisco CallManager). Помимо этой задачи диспетчер проводит аутентификацию и авторизацию абонентов, а также обладает интерфейсом к биллинговой системе.

Для удобства администрирования большого числа удаленных шлюзов и диспетчеров может использоваться специальное программное обеспечение, называемое монитором. Ну и, наконец, последним обязательным элементом сети IP-телефонии является абонентский пункт, который может быть реализован как программным (например, Cisco IP SoftPhone), так и аппаратным способом (например, Cisco IP Phone, подключаемые напрямую к Ethernet-порту коммутатора). Причем в первом случае звонки можно осуществлять даже через домашний компьютер, оснащенный звуковой картой и микрофоном, а во втором случае, в качестве абонентского пункта выступает т.н. IP-телефон. Еще одним компонентом архитектуры IP-телефонии можно назвать специализированные пользовательские приложения, возникшие благодаря интеграции голоса, видео и данных (call-центры, системы унифицированной обработки сообщений).

Зачем атакуют IP-телефонию?

Сети IP-телефонии – хорошая цель для хакеров. Некоторые из них могут подшутить над вами, послав вам голосовое сообщение от имени руководства компании. Кто-то может захотеть получить доступ к голосовому почтовому ящику вашего руководства или даже захочет перехватить голосовые данные о финансовых сделках, которыми обмениваются сотрудники финансового департамента или бухгалтерии. Ваши конкуренты могут захотеть подорвать вашу репутацию путем выведения из строя шлюзов и диспетчеров, тем самым, нарушая доступность телефонных услуг для ваших абонентов, что, в свою очередь, может также привести к нанесению ущерба бизнесу ваших клиентов. Существуют и другие причины, например, звонки за чужой счет (кража сервиса).

Возможные угрозы

Главная проблема с безопасностью IP-телефонии в том, что она слишком открыта и позволяет злоумышленникам относительно легко совершать атаки на ее компоненты. Несмотря на то, что случаи таких нападений практически неизвестны, они могут быть при желании реализованы, т.к. атаки на обычные IP-сети практически без изменений могут быть направлены и на сети передачи оцифрованного голоса. С другой стороны, похожесть обычных IP-сетей и сетей IP-телефонии подсказывает нам и пути их защиты, но об этом чуть дальше.

Атаки на обычную телефонию применимы и для ее IP-родственницы - фонарь.

IP-телефония, являясь прямой родственницей обычной телефонии и IP-технологии, вобрала в себя не только их достоинства, но и их недостатки. Т.е. атаки, присущие обычной телефонии, также могут быть применены и для ее IP-составляющей. Перечислю некоторые из них, часть их которых я рассмотрю более подробно:

    Подслушивание телефонных переговоров

    Отказ в обслуживании

    Подмена номера

    Кража сервисов

    Неожидаемые вызовы

    Несанкционированное изменение конфигурации

    Мошенничество со счетом.

Перехват данных

Перехват данных – самая большая проблема, как обычной телефонии, так и ее IP-родственницы.

Однако в последнем случае эта опасность намного выше, т.к. злоумышленнику уже не надо иметь физический доступ к телефонной линии. Ситуацию ухудшает еще и тот факт, что множество протоколов, построенных на базе стека TCP/IP, передают данные в открытом виде. Таким грехом страдают HTTP, SMTP, IMAP, FTP, Telnet, SQL*net и, в том числе, протоколы IP-телефонии. Злоумышленник, который смог перехватить голосовой IP-трафик (а он по умолчанию между шлюзами не шифруется) может без труда восстановить исходные переговоры. Для этого существуют даже автоматизированные средства. Например, утилита vomit (Voice Over Misconfigured Internet Telephones), которая конвертирует данные, полученные в результате перехвата трафика с помощью свободно распространяемого анализатора протоколов tcpdump, в обычный WAV-файл, прослушиваемый с помощью любого компьютерного плейера. Эта утилита позволяет конвертировать голосовые данные, переданные с помощью IP-телефонов Cisco и сжатые с помощью кодека G.711. Мало того, помимо несанкционированного прослушивания злоумышленники могут повторно передать перехваченные голосовые сообщения (или их фрагменты) для достижения своих целей.

Однако сразу хочу отметить, что перехват голосовых данных - не такая простая задача, как кажется на первый взгляд. Злоумышленник должен иметь информацию об адресах шлюзов или абонентских пунктов, используемых VoIP-протоколах (например, H.323) и алгоритмах сжатия (например, G.711). В противном случае, злоумышленнику будет трудно настроить ПО для перехвата трафика или объем перехваченных данных и время для их анализа превысит все допустимые пределы.

Перехват данных может быть осуществлен как изнутри корпоративной сети, так и снаружи. Квалифицированный злоумышленник, имеющий доступ к физической среде передаче данных, может подключить свой IP-телефон к коммутатору и таким образом подслушивать чужие переговоры. Он также может изменить маршруты движения сетевого трафика и стать центральным узлом корпоративной сети через который проходит интересующий его трафик. Причем, если во внутренней сети вы можете с определенной долей вероятности обнаружить несанкционированно подключенное устройство, перехватывающее голосовые данные, то во внешней сети обнаружить ответвления практически невозможно. Поэтому любой незашифрованный трафик, выходящий за пределы корпоративной сети, должен считаться небезопасным.

Отказ в обслуживании

Традиционная телефонная связь всегда гарантирует качество связи даже в случае высоких нагрузок, что не является аксиомой для IP-телефонии. Высокая нагрузка на сеть, в которой передаются оцифрованные голосовые данные, приводит к существенному искажению и даже пропаданию части голосовых сообщений. Поэтому одна из атак на IP-телефонию может заключаться в посылке на сервер IP-телефонии большого числа "шумовых" пакетов, которые засоряют канал передачи данных, а в случае превышения некоторого порогового значения могут даже вывести из строя часть сети IP- телефонии (т.е. атака "отказ в обслуживании"). Что характерно, для реализации такой атаки нет необходимости "изобретать велосипед" - достаточно использовать широкие известные DoS-атаки Land, Ping of Death, Smurf, UDP Flood и т.д. Одним из решений этой проблемы является резервирование полосы пропускания, которого можно достичь с помощью современных протоколов, например, RSVP. Более подробно способы защиты будут рассмотрены далее.

Отказ в обслуживании - серьезная проблема для устройств IP-телефонии. - фонарь

Подмена номера

Для связи с абонентом в обычной телефонной сети вы должны знать его номер, а в IP-телефонии – роль телефонного номера выполняет IP-адрес. Следовательно, возможна ситуация, когда злоумышленник, используя подмену адреса, сможет выдать себя за нужного вам абонента. Именно поэтому задача обеспечения аутентификации не обойдена вниманием во всех существующих VoIP- стандартах и будет рассмотрена чуть позже.

Атаки на абонентские пункты

Необходимо понимать, что абонентские пункты, реализованные на базе персонального компьютера являются менее защищенными устройствами, чем специальные IP-телефоны. Этот тезис также применим и к любым другим компонентам IP-телефонии, построенным на программной основе. Это связано с тем, что на такие компоненты можно реализовать не только специфичные для IP- телефонии атаки. Сам компьютер и его составляющие (операционная система, прикладные программы, базы данных и т.д.) подвержены различным атакам, которые могут повлиять и на компоненты IP-телефонии. Например, Internet-черви Red Code, Nimda, различные троянцы и вирусы, DoS-атаки и их распределенные модификации – все это способно, если не вывести из строя голосовую IP-инфраструктуру, то существенно нарушить ее функционирование. При этом, даже если в самом ПО не найдено уязвимостей (до поры до времени), то используемые им другие программные компоненты третьих фирм (особенно широко известные) могут снизить общую защищенность до нуля. Ведь давно известно общее правило - "защищенность всей системы равна защищенности самого слабого ее звена". Для примера можно привести Cisco CallManager, который использует для своего функционирования Windows 2000 Server, MS Internet Information Server и MS SQL Server, каждый из которых обладает своим букетом дыр.

Атаки на диспетчеры

Злоумышленники могут атаковать и узлы (Gatekeeper в терминах H.323 или Redirect server в терминах SIP), которые хранят информацию о разговорах пользователей (имена абонентов, время, продолжительность, причина завершения звонка и т.д.). Это может быть сделано, как с целью получения конфиденциальной информации о самих разговорах, так и с целью модификации и даже удаления указанных данных. В последнем случае биллинговая система (например, у оператора связи) не сможет правильно выставлять счета своим клиентам, что может нарушить функционирование или нанести ущерб всей инфраструктуре IP-телефонии.

Стандарты IP-телефонии и механизмы их безопасности

Отсутствие единых принятых стандартов в данной области (см. рис.2) не позволяет разработать и универсальные рекомендации по защите устройств IP-телефонии. Каждая рабочая группа или производитель по-своему решает задачи обеспечения безопасности шлюзов и диспетчеров, что приводит к необходимости тщательного их изучения перед выбором адекватных мер по защите.

Безопасность H.323

H.323 - протокол, который позволяет построить VoIP-систему от начала и до конца. H.323 включает в себя ряд спецификаций, в т.ч. и H.235, которая реализует некоторые механизмы безопасности (аутентификацию, целостность, конфиденциальность и невозможность отказа от сообщений) для голосовых данных.

Аутентификация в рамках стандарта H.323 может быть реализована как с помощью алгоритмов симметричной криптографии (в этом случае не требуется никакого предварительного обмена между взаимодействующими устройствами и не так интенсивно нагружается центральный процессор), так и с помощью сертификатов или паролей. Кроме того, спецификация H.235 позволяет использовать в качестве механизма аутентификации IPSec, который также рекомендуется к применению и в других стандартах IP-телефонии.

После установки защищенного соединения, которое происходит через 1300 tcp-порт, узлы, участвующие в обмене голосовыми данными, обмениваются информацией о методе шифрования, которое может быть задействовано на транспортном (шифрование пакетов RTP-протокола) или сетевом (с помощью IPSec) уровне.

Безопасность SIP

Данный протокол, похожий на HTTP и используемый абонентскими пунктами для установления соединения (не обязательно телефонного, но и, например, для игр), не обладает серьезной защитой и ориентирован на применение решений третьих фирм (например, PGP). В качестве механизма аутентификации RFC 2543 предлагает несколько вариантов и, в частности, базовую аутентификацию (как в HTTP) и аутентификацию на базе PGP. Пытаясь устранить слабую защищенность данного протокола, Майкл Томас из компании Cisco Systems разработал проект стандарта IETF, названный "SIP security framework", который описывает внешние и внутренние угрозы для протокола SIP и способы защиты от них. В частности, к таким способам можно отнести защиту на транспортном уровне с помощью TLS или IPSec. Кстати, компания Cisco в своей архитектуре безопасности корпоративных сетей SAFE, очень большое внимание уделяет практическим вопросам защиты IP- телефонии.

Безопасность MGCP

Стандарт MGCP, определенный в RFC 2705 и неприменяемый на оконечных устройствах (шлюзы MGCP могут работать как с компонентами, поддерживающими H.323, так и с компонентами, поддерживающими SIP), использует для защиты голосовых данных протокол ESP спецификации IPSec. Может также использоваться и протокол AH (но только не в сетях IPv6), который обеспечивает аутентификацию и целостность данных (connectionless integrity) и защиту от повторений, передаваемых между шлюзами. В то же время, протокол AH не обеспечивает конфиденциальности данных, которая достигается применением ESP (наряду с другими тремя защитными функциями).

Обеспечение безопасности

Выбор правильной топологии

Не рекомендуется использовать для VoIP-инфраструктуры концентраторы, которые облегчают злоумышленникам перехват данных. Кроме того, т.к. оцифрованный голос обычно проходит по той же кабельной системе и через тоже сетевое оборудование, что и обычные данные, стоит правильно разграничить между ними информационные потоки. Это, например, может быть сделано с помощью механизма VLAN (однако не стоит полагаться только на них). Сервера, участвующие в инфраструктуре IP-телефонии желательно размещать в отдельном сетевом сегменте (см. рис.3), защищенном не только с помощью встроенных в коммутаторы и маршрутизаторы механизмов защиты (списки контроля доступа, трансляция адресов и обнаружение атак), но и с помощью дополнительно установленных средств защиты (межсетевые экраны, системы обнаружения атак, системы аутентификации и т.д.).

Вы должны помнить, что передача голосовых данных по вашей корпоративной сети накладывает на ее проектирование особый отпечаток. Большое внимание вы должны уделить вопросам высокой доступности и отказоустойчивости. Если пользователи еще могут привыкнуть к непродолжительному выходу из строя Web-сервера или почтовой системы, то привыкнуть к нарушению телефонной связи они не смогут. Обычная телефонная сеть так редко выходит из строя, что многие пользователи закономерно наделяют свойством безотказности и ее IP-сестру. Поэтому сбой в работе VoIP- инфраструктуры может подорвать к ней доверие со стороны пользователей, что в свою очередь может привести к отказу от ее использования и нанесению материального ущерба ее собственнику.

Физическая безопасность

Желательно запретить неавторизованный доступ пользователей к сетевому оборудованию, в т.ч. и коммутаторам, и по возможности все неабонентское оборудование разместить в специально оборудованных серверных комнатах. Это позволит предотвратить несанкционированное подключение компьютера злоумышленника. Кроме того, следует регулярно проверять наличие несанкционированно подключенных к сети устройств, которые могут быть "врезаны" напрямую в сетевой кабель. Для определения таких устройств можно использовать различные методы, в т.ч. и сканеры (например, Internet Scanner или Nessus), дистанционно определяющие наличие в сети "чужих" устройств.

Контроль доступа

Еще один достаточно простой способ защиты инфраструктуры VoIP – контроль MAC-адресов. Не разрешайте IP-телефонам с неизвестными MAC-адресами получать доступ к шлюзам и иным элементам IP-сети, передающей голосовые данные. Это позволит предотвратить несанкционированное подключение "чужих" IP-телефонов, которые могут прослушивать ваши переговоры или осуществлять телефонную связь за ваш счет. Разумеется, MAC-адрес можно подделать, но все-таки не стоит пренебрегать такой простой защитной мерой, которая без особых проблем реализуется на большинстве современных коммутаторов и, даже, концентраторов. Узлы (в основном, шлюзы, диспетчеры и мониторы) должны быть настроены таким образом, чтобы блокировать все попытки несанкционированного доступа к ним. Для этого можно воспользоваться как встроенными в операционные системы возможностями, так и продуктами третьих фирм. А так как мы работаем в России, то я рекомендую применять средства, сертифицированные в Гостехкомиссии России, тем более что таких средств немало.

VLAN

Технология виртуальных локальных сетей (VLAN) обеспечивает безопасное разделение физической сети на несколько изолированных сегментов, функционирующих независимо друг от друга. В IP телефонии эта технология используется для отделения передачи голоса от передачи обычных данных (файлов, e-mail и т.д.). Диспетчеры, шлюзы и IP-телефоны помещают в выделенную VLAN для передачи голоса. Как я уже отметил выше, VLAN существенно усложняет жизнь злоумышленникам, но не снимает всех проблем с подслушиванием переговоров. Существуют методы, которые позволяют злоумышленникам перехватывать данные даже в коммутированной среде.

Шифрование

Шифрование должно использоваться не только между шлюзами, но и между IP-телефоном и шлюзом. Это позволит защитить весь путь, который проходят голосовые данные из одного конца в другой. Обеспечение конфиденциальности не только является неотъемлемой частью стандарта H.323, но и реализовано в оборудовании некоторых производителей. Однако этот механизм практически никогда не задействуется. Почему? Потому что качество передачи данных является первоочередной задачей, а непрерывное зашифрование/расшифрование потока голосовых данных требует времени и вносит зачастую неприемлемые задержки в процесс передачи и приема трафика (задержка в 200 . 250 мсек может существенно снизить качество переговоров). Кроме того, как уже было сказано выше, отсутствие единого стандарта не позволяет принять всеми производителями единый алгоритм шифрования. Однако справедливости ради надо сказать, что сложности перехвата голосового трафика пока позволяют смотреть на его шифрование сквозь пальцы.

Кстати, если вы все-таки решитесь использовать шифрование, то помните, что, шифруя голосовые данные, вы скрываете их не только от злоумышленника, но и от средств обеспечения контроля качества (QoS), которые не смогут предоставить им соответствующую полосу пропускания и приоритетное обслуживание. Устранив одну проблему (беззащитность), перед вами встает другая (качество обслуживания). И можно быть уверенным, что при таком раскладе вы предпочтете решение второй проблемы, пренебрегая решением первой. Кстати, шифровать можно тоже не все подряд. Сигнальные протоколы, используемые в IP-телефонии, шифровать не рекомендуется, т.к. в этом случае вы зашифруете и всю служебную информацию, необходимую для поддержания работоспособности всей сети.

Но не стоит сразу отказываться от шифрования - все-таки обезопасить свои переговоры также необходимо. Поэтому стоит с умом подходить к шифрованию VoIP-данных. Например, компания Cisco рекомендует вместо туннеля GRE или применения VPN-концентраторов Cisco VPN 3000 использовать команду Crypto в операционной системе IOS своего оборудования, что позволяет защитить данные при сохранении качества обслуживания. Кроме того, можно использовать выборочное шифрование только для определенных полей в VoIP-пакетах.

Межсетевой экран

Для защиты корпоративной сети обычно используется межсетевые экраны, которые с тем же успехом

могут быть использованы и для защиты VoIP-инфраструктуры. Единственное, что необходимо сделать - добавить ряд правил, учитывающих топологию сети, местоположение установленных компонентов IP-телефонии и т.д. Например, доступ к Cisco CallManager из Internet или демилитаризованной зоны обычно блокируется, однако в случае использования Web- ориентированного управления такой доступ должен быть разрешен, но только для 80-го порта и только для ограниченного диапазона внешних адресов. А для защиты SQL-сервера, входящего в состав Cisco CallManager, можно запретить доступ со всех портов кроме 1433-го.

Кстати, существует два типа межсетевых экранов, которые могут быть использованы для защиты компонентов IP-телефонии. Первый из них, корпоративный, ставится на выходе из корпоративной сети и защищает сразу все ее ресурсы. Примером такого МСЭ является CiscoSecure PIX Firewall. Второй тип - персональный, защищающий только один конкретный узел, на котором может стоять абонентский пункт, шлюз или диспетчер. Примерами таких персональных МСЭ являются RealSecure Desktop Protector или BlackICE PC Protector. Кроме того, некоторые операционные системы (например, Linux или Windows 2000) имеют встроенные персональные межсетевые экраны, что позволяет задействовать их возможности для повышения защищенности инфраструктуры VoIP. В зависимости от используемого стандарта IP-телефонии применение межсетевых экранов может повлечь за собой разные проблемы. Например, после того, как с помощью протокола SIP абонентские пункты обменялись информацией о параметрах соединения, все взаимодействие осуществляется через динамически выделенные порты с номерами больше 1023. В этом случае МСЭ заранее "не знает" о том, какой порт будет использован для обмена голосовыми данными и, как следствие, будет такой обмен блокировать. Поэтому межсетевой экран должен уметь анализировать SIP-пакеты с целью определения используемых для взаимодействия портов и динамически создавать или изменять свои правила. Аналогичное требование предъявляется и для других протоколов IP-телефонии.

Еще одна проблема связан с тем, что не все МСЭ умеют грамотно обрабатывать не только заголовок протокола IP-телефонии, но и его тело данных, т.к. зачастую важная информация находится внутри него. Например, информация об адресах абонентов в протоколе SIP находится именно в теле данных. Неумение межсетевого экрана "вникать в суть" может привести к невозможности обмена голосовыми данными через межсетевой экран или "открытии" в нем слишком большой дыры, которой могут воспользоваться злоумышленники.

Аутентификация

Различные IP-телефоны поддерживают механизмы аутентификации, которые позволяют воспользоваться его возможностями только после предъявления и проверки пароля или персонального номера PIN, разрешающего пользователю доступ к IP-телефону. Однако надо заметить, что данное решение не всегда удобно для конечного пользователя, особенно в условиях ежедневного использования IP-телефона. Возникает обычное противоречие "защищенность или удобство".

RFC 1918 и трансляция адресов

Не рекомендуется использовать для VoIP IP-адреса, доступные из Internet, - это существенно снижает общий уровень безопасность инфраструктуры. Поэтому при возможности используйте адреса, указанные в RFC 1918 (10.x.x.x, 192.168.x.x и т.д.) и немаршрутизируемые в Internet. Если это невозможно, то необходимо задействовать на межсетевом экране, защищающем вашу корпоративную сеть, механизм трансляции адресов (network address translation, NAT).

Системы обнаружения атак

Выше уже было рассказано о некоторых атаках, которые могут нарушить работоспособность VoIP- инфраструктуры. Для защиты от них можно использовать хорошо себя зарекомендовавшие и известные в России средства обнаружения атак (intrusion detection system), которые не только своевременно идентифицируют нападения, но и блокируют их, не давая нанести вред ресурсам корпоративной сети. Такие средства могут защищать как целые сетевые сегменты (например, RealSecure Network Sensor или Snort), так и отдельные узлы (например, CiscoSecure IDS Host Sensor или RealSecure Server Sensor).

На сегодняшний день проблемы информационной безопасности в мире приобретают всё большую актуальность. В СМИ часто можно наткнуться на новость об очередной успешной хакерской атаке, крупной утечке критичных данных или очередном вирусе-вымогателе, который срывает работу целых компаний. Даже если Вы человек далёкий от информационной безопасности и мира информационных технологий, то Вы всё равно наверняка слышали о вирусе “WannaCry”, уязвимостях “Spectre” и “Meltdown” и может быть даже о недавней атаке на устройства компании Cisco, которая ударила по крупным провайдерам и парализовала много сервисов и сетевых сегментов.

Однако, широкой огласке обычно подвергаются новости об атаках и уязвимостях, носящие массовый характер, направленных на наиболее распространенные инфраструктурные системы. Мы же хотим рассказать о том, как обстоит ситуация с информационной безопасностью в отдельной в отдельно взятой сфере - IP телефонии и решений VoIP. Разберём наиболее важные проблемы и тренды развития данного направления.

Проблемы информационной безопасности в VoIP

Если раньше, выбирая на чём строить офисную телефонию, заказчиков больше всего волновали вопросы стоимости и надёжности, то в связи с нынешним положением, вопросы защиты и безопасности всё чаще начинают преобладать. Хотя IP телефония имеет массу преимуществ по сравнению с системами традиционной телефонии, её намного легче взломать. В случае с традиционной системой PSTN злоумышленник должен получить физический доступ к среде передачи или системам, которые задействованы в обмене голосовой информацией. IP телефония – это прежде всего сеть с коммутацией пакетов, которые передаются на ряду с другими корпоративными сервисами – Интернетом, почтой и другими. Если эта сеть недостаточно защищена, то злоумышленнику даже не обязательно находиться в одной стране с системой IP телефонии, чтобы получить доступ к критичным данным, украсть их или модифицировать.

Вот почему необходимо обеспечивать многоуровневую защиту систем корпоративной IP телефонии. Недостаточно просто поставить стойкий пароль к интерфейсу управления. Это должен быть чёткий набор определённых мер, применяемых в комплексе – межсетевое экранирование, антивирусная защита, регулярные обновления программного обеспечения, шифрование передаваемых данных и другое.

Отдельно следует уделить внимание повышению осведомлённости своих сотрудников об атаках из разряда социальной инженерии. Одним из наиболее распространённых векторов атаки данного типа на сегодняшний день является “фишинг”. Суть его заключается в том, что злоумышленник рассылает “письма счастья” с вредоносными вложениями, в надежде на то, что человек откроет это вложение и тем самым, загрузит на свой компьютер вредонос. Защититься от таких атак можно сразу на нескольких уровнях:

  1. Межсетевой экран, на котором адрес отправителя фишинговых писем должен быть заблокирован. Автоматизировать процесс получения актуального списка адресов активных отправителей для блокировки на МСЭ, можно с помощью решений Threat Intelligence. Существуют как платные решения от таких компаний как Anomali, ThreatConnect или EclecticIQ, так и OpenSource, например, YETI и MISP.
  2. Решение для защиты почтового сервера, которое проверяет все письма на предмет подозрительных вложений, адреса отправителя, блокирует спам. Примерами таких решений является Kaspersky Security для почтовых серверов, AVG Email Server Edition для ME, McAfee Security for Email Servers. Кстати, в этом случае также можно автоматизировать процесс блокировки с помощью решений TI.
  3. Антивирусное ПО для защиты оконечных устройств, которое заблокирует опасное вложение, если всё-таки вредонос сможет пролезть через МСЭ и почтовый сервер. Для этого подойдёт Kaspersky Endpoint Security, Norton, Trend Micro и другие.

Но если от фишинга можно защититься с помощью специализированных программ и аппаратных решений, то от следующих видов атак, основанной на социальной инженерии, защититься гораздо труднее. Возможно, Вы не знали, но помимо традиционного email “фишинга”, существует также и телефонный. Например, сотруднику Вашей компании на голосовую почту может прийти сообщение от “банка” о том, что кто-то пытался получить доступ к его счёту и что ему необходимо срочно перезвонить по оставленному номеру. Не трудно догадаться, что на другом конце провода, его будет ждать злоумышленник, который постарается сделать всё, чтобы втереться в доверие, украсть данные его счёта, чтобы в итоге похитить денежные средства.

Существует также телефонный “вишинг”. Этот тип атаки направлен на первую линию сотрудников, которые принимают все входящие звонки в Вашей компании. На общий номер поступает звонок от какой-нибудь известной организации или персоны, а дальше с помощью методов психологического давления, доверчивого сотрудника заставляют что-либо сделать. В самом лучшем случае, позвонивший будет агрессивно требовать соединить его с руководством компании, чтобы предложить какие-нибудь услуги, в самом худшем - выдать конфиденциальную или критически важную информацию. А что, если злоумышленник узнает каким банком обслуживается Ваша компания и позвонит бухгалтеру от лица “Вашего банка”? К такому тоже нужно быть готовым.

Защититься от подобного типа атак можно было бы с помощью некоего аналога Threat Intelligence для VoIP – списка телефонных номеров, с которых поступают “фишинговые” и “вишинговые” звонки, чтобы заблокировать их на АТС. Однако, такого решения пока нет, поэтому придётся просвещать сотрудников на тему безопасности.

Безопасность облачных систем

Сейчас уже сложно обозначить чёткие границы офисной сети. С распространением облачных решений, распределённых сетей VPN и всеобщей виртуализации, корпоративная сеть уже перестала иметь чёткую географическую привязку.

Аналогично обстоят дела и в сфере VoIP. Каждый крупный провайдер IP телефонии имеет в своем наборе услуг облачную АТС, которая настраивается в считанные минуты и способна обеспечить телефонией компанию любого размера и неважно где территориально она расположена. Облачная или виртуальная АТС – это очень удобное решение, которое привлекает заказчиков тем, что не надо держать лишние сервера в здании и обслуживать их. Вместо этого, можно просто арендовать необходимые серверные мощности или сервис телефонии. Однако, с точки зрения информационной безопасности, облачные АТС – это идеальная цель для хакерских атак. Потому что, как правило, аккаунты для доступа к настройкам АТС, находятся в открытом доступе. Если владелец аккаунта не озаботится созданием стойкого пароля, то он рискует оплатить немаленький счёт за телефонные разговоры злоумышленника или предоставить доступ к записям разговоров своих сотрудников. В этой связи при выборе провайдера следует также проверить обеспечивает ли он дополнительные мероприятия по защите целостности и конфиденциальности данных. Используется шифрование при подключении к аккаунту с настройками облачной АТС, шифруются ли данные при их транспортировке.

Тренды развития направления ИБ в VoIP

Наиболее распространённым методом защиты корпоративной инфраструктуры является организация защищённой сети VPN, когда подключение извне осуществляется по зашифрованному каналу, а данные внутри сети передаются в незашифрованном виде. Это относится и к голосовому трафику. Однако, тенденции развития информационных технологий указывают на то, что в недалёком будущем голосовая информация также будет подвергаться шифрованию. Большинство VoIP вендоров уже давно имплементируют в своих решениях поддержку таких протоколов как SIP/TLS, SRTP, ZRTP и д.р, стимулируя пользователей применять внедрять ещё один уровень защиты. Например, большинство IP-телефонов и решений видеоконференцсвязи от компании Cisco, а также системы CUCM, CUBE, Cisco SBC, UCCS и д.р поддерживают TLS 1.2 и SRTP. Самое распространённое Open Source решение IP-АТС Asterisk имеет поддержку защищённых протоколов передачи медиа трафика начиная с версии 1.8. В программной Windows-based АТС 3CX версии V15, поддержка SRTP включена по умолчанию.

VoIP решения зачастую очень тесно интегрируются с другими корпоративными системами, такими как CRM, ERP, CMS, не говоря уже о таких каналах бизнес коммуникаций как email, обмен мгновенными сообщениями (чат) и социальные сети, формируя в совокупности концепцию UC (Unified Communications). Потенциальные преимущества, которые несёт данная концепция очень привлекательны, но вместе с тем, создаётся множество точек уязвимых к возможному взлому. Недостаточный уровень защиты одной из них может быть угрозой всей корпоративной сети. Поэтому разработчики, несомненно, будут усиливать безопасность каналов интеграции данных систем.

Можно также ожидать интеграцию систем корпоративной телефонии в такие средства защиты как DLP (средства защиты от утечек), адаптации метрик VoIP в SIEM системах (система управления информацией и событиями безопасности), а также появление унифицированных репутационных баз (Threat Intelligence) со списками потенциально опасных номеров или других индикаторов компрометации, относящихся к VoIP, которые будут автоматически блокироваться имеющимися средствами защиты.

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!