OLTP и OLAP системы. Системы обработки транзакций OLTP и OLAP - технологий


Характеристики OLTP системы Большой объем информации Часто различные БД для разных подразделений Нормализованная схема, отсутствие дублирования информации Интенсивное изменение данных Транзакционный режим работы Транзакции затрагивают небольшой объем данных Обработка текущих данных – мгновенный снимок Много клиентов Малое время отклика – несколько секунд Характеристики OLAP системы Большой объем информации Синхронизированная информация из различных БД с использованием общих классификаторов Ненормализованная схема БД с дубликатами Данные меняются редко, Изменение происходит через пакетную загрузку Выполняются сложные нерегламентированные запросы над большим объемом данных с широким применением группировок и агрегатных функций. Анализ временных зависимостей Небольшое количество работающих пользователей – аналитики и менеджеры Большее время отклика (но все равно приемлемое) – несколько минут






Правила Кодда для реляционных БД 1. Правило информации. 2. Правило гарантированного доступа. 3. Правило поддержки недействительных значений. 4. Правило динамического каталога, основанного на реляционной модели. 5.Правило исчерпывающего подъязыка данных. 6. Правило обновления представлений. 7. Правило добавления, обновления и удаления. 8. Правило независимости физических данных. 9. Правило независимости логических данных. 10. Правило независимости условий целостности. 11. Правило независимости распространения. 12. Правило единственности.


Правила Кодда для OLAP 1. Концептуальное многомерное представление. 2. Прозрачность. 3. Доступность. 4. Постоянная производительность при разработке отчетов. 5. Клиент-серверная архитектура. 6. Общая многомерность. 7. Динамическое управление разреженными матрицами. 8. Многопользовательская поддержка. 9. Неограниченные перекрестные операции. 10. Интуитивная манипуляция данными. 11. Гибкие возможности получения отчетов. 12. Неограниченная размерность и число уровней агрегации.


Реализация OLAP Типы OLAP - серверов MOLAP (Multidimensional OLAP) - и детальные данные, и агрегаты хранятся в многомерной БД. ROLAP (Relational OLAP) - детальные данные храняться в реляционной БД; агрегаты хранятся в той же БД в специально созданных служебных таблицах. HOLAP (Hybrid OLAP) - детальные данные храняться в реляционной БД, а агрегаты хранятся в многомерной БД.








Особенности ROLAP – схемы типа звезда 1.Одна таблица фактов, которая сильно денормализована 2.Несколько таблиц измерений, которые также денормализованы 3.Первичный ключ таблицы фактов является составным и имеет по одному столбцу на каждое измерение 4.Агрегированные данные храняться совместно с исходными Недостатки Если агрегаты храняться совместно с исходными данными, то в измерениях необходимо использовать дополнительный параметр – уровень иерархии











Структура хранилища в ORACLE СУБД SQL клиентMOLAP клиент Java API JDBC OCI ODBC OLE DB CWM или CWM2 Хранилище OLAP (BLOB в реляционной таблице) Схема звезда Регистрация метаданных Многомерное ядро (процесс в ядре ORACLE) OLAP DML SQL интерфейс к OLAP (DBMS_AW, OLAP_TABLE, …) Многомерные метаданные

В области информационных технологий существуют два взаимно дополняющих друг друга направления:

Технологии, ориентированные на оперативную (транзакционную) обработку данных. Эти технологии лежат в основе экономических информационных систем, предназначенных для оперативной обработки данных. Называются подобные системы - OLTP (online transaction processing) системы ;

Технологии, ориентированные на анализ данных и принятие решений. Эти технологии лежат в основе экономических информационных систем, предназначенных для анализа

накопленных данных. Называются подобные системы - OLAP

(online analytical processing) системы .

Основное назначение OLAP -систем - динамический многомерный

анализ исторических и текущих данных, стабильных во времени, анализ

тенденций, моделирование и прогнозирование будущего. Такие

системы, как правило, ориентированы на обработку произвольных,

заранее не регламентированных запросов. В качестве основных

характеристик этих систем можно отметить следующие:

Поддержка многомерного представления данных, равноправие всех измерений, независимость производительности от количества измерений;

Прозрачность для пользователя структуры, способов хранения и обработки данных;

Автоматическое отображение логической структуры данных во внешние системы;

Динамическая обработка разряженных матриц эффективным способом.

Термин OLAP является сравнительно новым и в разных литературных источниках трактуется иногда по разному. Этот термин часто отождествляют с поддержкой принятия решений (DSS (Decision Support Systems)- системы поддержки принятия решения. А в качестве синонима для последнего термина используют Data Warehousing -хранилища (склады) данных, понимая под этим набор организационных решений, программных и аппаратных сре дств дл я обеспечения аналитиков информацией на основе данных из систем обработки транзакций нижнего уровня и других источников

“Склады данных” позволяют обрабатывать данные, накопленные за длительные периоды времени. Эти данные являются разнородными (и не обязательно структурированными). Для “складов данных” присущ многомерный характер запросов. Огромные объемы данных, сложность структуры как данных, так и запросов требует использования специальных методов доступа к информации.

В других источниках понятие Системы Поддержки Принятия Решений (СППР) считается более широким. Хранилища данных и средства оперативной аналитической обработки могут служить одними из компонентов архитектуры СППР.

OLAP всегда включает в себя интерактивную обработку запросов и последующий многопроходный анализ информации, который позволяет выявить разнообразные, не всегда очевидные, тенденции, наблюдающиеся в предметной области.

Иногда различают " OLAP в узком смысле" - это системы которые обеспечивают только выборку данных в различных разрезах, и " OLAP в широком смысле", или просто OLAP , включающей в себя:

Поддержку нескольких пользователей, редактирующих БД.

Функции моделирования, в том числе вычислительные механизмы получения производных результатов, а также агрегирования и объединения данных;

Прогнозирование, выявление тенденций и статистический анализ.

Естественно, что каждый из этих типов ИС требует специфической организации данных, а так же специальных программных средств, обеспечивающих эффективное выполнение стоящих задач.

OLAP - средства обеспечивают проведение анализа деловой информации по множеству параметров, таких как вид товара, географическое положение покупателя, время оформления сделки и продавец, каждый из которых допускает создание иерархии представлений. Так, для времени можно пользоваться годовыми, квартальными, месячными и даже недельными и дневными промежутками; географическое разбиение может проводиться по городам, штатам, регионам, странам или, если потребуется, по целым полушариям.

OLAP - системы можно разбить на три класса.

Наиболее сложными и дорогими из них являются основанные на патентованных технологиях серверы многомерных БД . Эти системы обеспечивают полный цикл OLAP -обработки и либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для анализа данных внешние программы работы с электронными таблицами. Продукты этого класса в наибольшей степени соответствуют условиям применения в рамках крупных информационных хранилищ. Для их обслуживания требуется целый штат сотрудников, занимающихся как установкой и сопровождением системы, так и формированием представлений данных для конечных пользователей. Обычно подобные пакеты довольно дороги. В качестве примеров продуктов этого класса можно привести систему Essbase корпорации Arbor Software , Express фирмы IRI (входящей теперь в состав Oracle), Lightship производства компании Pilot Software и др.

Следует отметить, что одним из способов обеспечения быстрой обработки данных при их анализе является организация данных в виде многомерных БД (MDD). Информация в MDD хранится не в виде индексированных записей в таблицах, а в форме логически упорядоченных массивов. Единой общепризнанной многомерной модели хранения данных не существует. В MDD отсутствует стандартизованный метод доступа к данным, и они могут отвечать требованиям специфической аналитической обработки данных.

Принимая во внимание все перечисленное, сравнение между различными MDD - продуктами можно проводить только по самым обобщенным категориям. В более дешевом секторе рынка присутствуют лишь однопользовательские и предназначенные для небольших локальных сетей средства просмотра многомерных данных. Хотя они обладают довольно высоким уровнем функциональных возможностей и удобны в использовании, эти системы ограниченны по своему масштабу. и им недостает средств, необходимых для реализации OLAP - обработки в широком смысле. В данную категорию попадают такие продукты, как PowerPlay корпорации Cognos , PaBlo фирмы Andyne и Mercury компании Business Objects . Дорогой же сектор рынка представлен системами Acumate ES фирмы Kenan Technologies , Express корпорации Oracle , Gentium компании Planning Sciences и Holos фирмы Holistic Systems . Они настолько разнятся по своим возможностям, что любую из них можно смело выделять в отдельную категорию. И наконец, MDD -системы в чистом виде: Essbase корпорации Arbor Software , LightShip Server фирмы Pilot Software и TM /1 компании Sinper [ N . Raden (Рынок программных средств)].

Второй класс OLAP -средств - реляционные OLAP -системы (ROLAP). Здесь для хранения данных используются старые реляционные СУБД, а между БД и клиентским интерфейсом организуется определяемый администратором системы слой метаданных. Через этот промежуточный слой клиентский компонент может взаимодействовать с реляционной БД как с многомерной. Подобно средствам первого класса, ROLAP -системы хорошо приспособлены для работы с крупными информационными хранилищами, требуют значительных затрат обслуживания специалистами информационных подразделений и предусматривают работу в многопользовательском режиме. Среди продуктов этого типа - IQ / Vision корпорации IQ Software , DSS / Server и DSS / Agent фирмы MicroStrategy и DecisionSuite компании Information Advantage .

ROLAP - средства реализуют функции поддержки принятия решений в надстройке над реляционным процессором БД.

Такие программные продукты должны отвечать ряду требований, в частности:

Иметь мощный оптимизированный для OLAP генератор SQL -выражений, позволяющий применять многопроходные SQL -операторы SELECT и/или коррелированные подзапросы;

Обладать достаточно развитыми средствами для проведения нетривиальной обработки, обеспечивающей ранжирование, сравнительный анализ и вычисление процентных соотношений в рамках класса;

Генерирвать SQL -выражения, оптимизированные для целевой реляционной СУБД, включая поддержку доступных в ней расширений этого языка;

Предоставлять механизмы описания модели данных с помощью метаданных и давать возможность использовать эти метаданные для построения запросов в реальном масштабе времени;

Включать в себя механизм, позволяющий оценивать качество построения сводных таблиц с точки зрения скорости вычисления, желательно с накоплением статистики по их использованию.

Третий, сравнительно новый тип OLAP -средств - инструменты генерации запросов и отчетов для настольных ПК , дополненные OLAP -функциями или интегрированные с внешними средствами, выполняющими такие функции. Эти весьма развитые системы осуществляют выборку данных из исходных источников, преобразуют их и помещают в динамическую многомерную БД, функционирующую на ПК конечного пользователя. Указанный подход, позволяющий обойтись как без дорогостоящего сервера многомерной БД, так и без сложного промежуточного слоя метаданных, необходимого для ROLAP - средств, обеспечивает в то же время достаточную эффективность анализа. Эти средства для настольных ПК лучше всего подходят для работы с небольшими, просто организованными БД. Потребность в квалифицированном обслуживании для них ниже, чем для других OLAP -систем, и примерно соответствует уровню обычных сред обработки запросов. В числе основных участников этого сектора рынка -к омпания Brio Technology со своей системой Brio Query Enterprise , Business Objects с одноименным продуктом и Cognos с PowerPlay .

В настоящее время увеличивается число Web -совместимых продуктов OLAP .

Важным является вопрос приспосабливания OLAP к остальному ПО. Хотя поставщики OLAP начинают предлагать некоторые способы взаимодействия с SQL -СУБД и другими инструментами, но однако, пользователи и аналитики предупреждают, что уровень интеграции может быть различным и, вероятно, потребует значительного объема кодирования, включая написание запросов на языке SQL . Более того, для интеграции OLAP с остальным программным обеспечением предприятия не существует промышленного стандарта.

Решение данной проблемы может состоять в следующем. Например, многие компании позиционируют базы данных с OLAP в качестве клиентских частей хранилищ данных. При таком подходе хранилища питают ядро многомерной OLAP выборками данных, к которым в дальнейшем могут получить доступ пользователи для быстрого выполнения комплексных запросов. При этом целью является создание среды запросов, скрывающей от пользователя местоположение данных. В этой среде будут автоматически выполняться комплексные запросы к ядру многомерной обработки или поиск детализированной информации и простых запросов на реляционных серверах. Для компаний, которые не могут пойти этим путем, важную роль в настройке связей между инструментами OLAP и другим программным обеспечением играют фирмы-консультанты.

OLTP - системы , являясь высокоэффективным средством реализации оперативной обработки, оказались мало пригодны для задач аналитической обработки. Это вызвано следующим:

1. средствами традиционных OLTP -систем можно построить аналитический отчет и даже прогноз любой сложности, но заранее регламентированный. Любой шаг в сторону, любое нерегламентированное требование конечного пользователя, как правило, требует знаний о структуре данных и достаточно высокой квалификации программиста;

2. многие необходимые для оперативных систем функциональные возможности являются избыточными для аналитических задач и в то же время могут не отражать предметной области. Для решения большинства аналитических задач требуется использование внешних специализированных инструментальных сре дств дл я анализа, прогнозирования и моделирования. Жесткая же структура баз не позволяет достичь приемлемой производительности в случае сложных выборок и сортировок и, следовательно, требует больших временных затрат для организации шлюзов.

3. в отличие от транзакционных, в аналитических системах не требуются и, соответственно, не предусматриваются развитые средства обеспечения целостности данных, их резервирования и восстановления. Это позволяет не только упростить сами средства реализации, но и снизить внутренние накладные расходы и, следовательно, повысить производительность при выборке данных.

Круг задач, эффективно решаемых каждой из систем, определим на основе сравнительных характеристик OLTP - и OLAP -систем (табл. 8).

    OLTP (обработка транзакций в режиме реального времени) участвует в работе конкретной системы. OLTP характеризуется большим количеством коротких онлайновых транзакций (INSERT, UPDATE, DELETE). Основной упор для OLTP-систем заключается в очень быстрой обработке запросов, обеспечении целостности данных в средах с множественным доступом и эффективности, измеряемой количеством транзакций в секунду. В базе данных OLTP есть подробные и текущие данные, а схема, используемая для хранения транзакционных баз данных, - это модель сущности (обычно 3NF). Он включает в себя Запросы, связанные с индивидуальной записью, например "Обновление электронной почты" в базе данных компании.

    OLAP (он-лайн аналитическая обработка) имеет дело с историческими данными или архивными данными. OLAP характеризуется относительно низким объемом транзакций. Запросы часто очень сложны и включают скопления. Для систем OLAP время отклика - это показатель эффективности. Приложения OLAP широко используются методами интеллектуального анализа данных. В базе данных OLAP хранятся агрегированные исторические данные, хранящиеся в многомерных схемах (обычно звездообразная схема). Иногда запрос должен получить доступ к большому количеству данных в записях управления, как то, что было прибылью вашей компании в прошлом году.

    Очень короткий ответ:

    Различные базы данных имеют разные виды использования. Я не эксперт по базам данных. Когда сомневаюсь, я просто использую SQL.

    Короткий ответ:

    Рассмотрим два примера сценариев:

    Сценарий 1:

    Вы строите интернет-магазин/веб-сайт, и хотите иметь возможность:

    • хранить пользовательские данные, пароли, предыдущие транзакции...
    • хранить актуальные продукты, связанную с ними цену.

    Вы хотите найти данные для конкретного пользователя, изменить его имя... В основном выполнять операции INSERT, UPDATE, DELETE для пользовательских данных. То же самое с продуктами и т.д.

    Вы хотите иметь возможность совершать транзакции, возможно, с участием пользователя, покупающего продукт (это отношение). Тогда OLTP, вероятно, хорошо подходит (подумайте о СУБД SQL).

    Сценарий 2:

    У вас есть интернет-магазин/веб-сайт, и вы хотите вычислить такие вещи, как

    • "общие расходы на деньги для всех пользователей"
    • "какой самый продаваемый продукт"

    Это относится к области аналитики/бизнес-аналитики, поэтому OLAP, вероятно, более подходит.

    Если вы думаете в терминах "Было бы хорошо знать, как/что/сколько"... и включает весь "объект" одного или нескольких видов (например, всех пользователей и большинство продуктов чтобы узнать, сколько всего потрачено), тогда OLAP, вероятно, лучше подходит.

    Более длинный ответ:

    Конечно, все не так просто. Поэтому мы должны сначала поместить маленькие теги, такие как OLTP и OLAP . Каждая база данных должна оцениваться независимо в конце.

    Итак, каково может быть принципиальное различие между OLAP и OLTP?

    Базы данных в скважинах должны где-то хранить данные. Не удивительно, что способ хранения данных в значительной степени отражает возможное использование указанной базы данных. Данные обычно хранятся на жестком диске. Подумайте о жестком диске как о самом большом листе бумаги, где мы можем читать и писать. Существует два способа организовать наши чтения и записи, чтобы они могли быть эффективными и быстрыми.

    Один из способов - сделать книгу, немного похожую на телефонную книгу. На каждой странице книги мы храним информацию о конкретном пользователе. Теперь, когда это приятно, мы можем легко найти информацию для конкретного пользователя! Просто перейдите на страницу! У нас даже может быть специальная страница в начале, чтобы рассказать нам, на какой странице находятся пользователи, если мы хотим. Но, с другой стороны, если мы хотим найти, скажем, сколько денег потратили все наши пользователи, нам пришлось бы читать каждую страницу, т.е. вся книга! Это будет книга/база данных на основе строк (OLTP). Необязательной страницей в начале будет индекс.

    Другой способ использовать большой лист бумаги - сделать бухгалтерскую книгу. Я не бухгалтер, но представьте себе, что у нас будет страница для "расходов", "покупок"... Это хорошо, потому что теперь мы можем очень быстро запросить такие вещи, как "дать мне общий доход" (просто прочитайте "покупки" "). Мы также можем попросить более интересные вещи, такие как" дать мне десятку продуктов, проданных" и все еще иметь приемлемую производительность. Но теперь подумайте, насколько болезненно было бы найти расходы для конкретного пользователя. Вам придется пройти весь список всех расходов и отфильтровать данные этого конкретного пользователя, а затем суммировать их. В основном это означает "прочитать всю книгу". Это будет база данных на основе столбцов (OLAP).

    Из этого следует, что :

    • Базы данных
    • OLTP предназначены для использования во многих небольших транзакциях и обычно служат "единственным источником правды".

      С другой стороны, базы данных

      OLAP более подходят для аналитики, интеллектуального анализа данных, меньше запросов, но обычно они больше (они работают с большим количеством данных).

    Это немного более активное участие, чем это, конечно, и что 20 000 футов обзор того, как базы данных отличаются, но это позволяет мне не заблудиться в море акронимов.

    Говоря об аббревиатурах:

    Разница довольно проста.

    OLTP (обработка транзакций в режиме on-line).

    OLTP - это класс информационных систем, которые облегчают и управляют транзакционными приложениями. OLTP также использовался для обращения к обработке, в которой система немедленно реагирует на запросы пользователей. Приложения для обработки транзакций в Интернете являются высокой пропускной способностью и интенсивностью ввода или обновления в управлении базами данных. Некоторые примеры OLTP-систем включают в себя ввод заказов, розничные продажи и системы финансовых транзакций.

    OLAP (он-лайн аналитическая обработка)

    OLAP является частью более широкой категории бизнес-аналитики, которая также включает реляционную базу данных, запись отчетов и интеллектуальную обработку данных. Типичные приложения OLAP включают бизнес-отчетность для продаж, маркетинга, управленческой отчетности, управления бизнес-процессами (BPM), бюджетирования и прогнозирования, финансовой отчетности и аналогичных областей.

    OLTP (O n- L ine T ransaction P обработка) vs OLAP ( O n- L ine A nalytical P ) p >

    Мы можем разделить IT-системы на транзакционные ( OLTP ) и аналитические ( OLAP ). В общем случае можно предположить, что OLTP системы предоставляют исходные данные хранилищам данных, тогда как системы OLAP помогают анализировать его.

    В следующей таблице приведены основные различия между дизайном системы OLTP и OLAP.

    Можно выделить некоторые классы систем, для которых больше подходят сильно или слабо нормализованные модели данных.

    Сильно нормализованные модели данных хорошо подходят для так называемыхOLTP-приложений (On-Line Transaction Processing (OLTP )-оперативная обработка транзакций ). Типичными примерами OLTP-приложений являются системы складского учета, системы заказов билетов, банковские системы, выполняющие операции по переводу денег, и т.п.

    Основная функция подобных систем заключается в выполнении большого количества коротких транзакций. Сами транзакции выглядят относительно просто, например, "снять сумму денег со счета А, добавить эту сумму на счет В".

    Проблема заключается в том, что, во-первых, транзакций очень много, во-вторых, выполняются они одновременно (к системе может быть подключено несколько тысяч одновременно работающих пользователей), в-третьих, при возникновении ошибки, транзакция должна целиком откатиться и вернуть систему к состоянию, которое было до начала транзакции (не должно быть ситуации, когда деньги сняты со счета А, но не поступили на счет В). Практически все запросы к базе данных в OLTP-приложениях состоят из команд вставки, обновления, удаления. Таким образом, критическим для OLTP-приложений является скорость и надежность выполнения коротких операций обновления данных. Чем выше уровень нормализации данных в OLTP-приложении, тем оно, как правило, быстрее и надежнее.

    Другим типом приложений являются так называемыеOLAP-приложения (On-Line Analitical Processing (OLAP ) -оперативная аналитическая обработка данных ). Это обобщенный термин, характеризующий принципы построениясистем поддержки принятия решений (Decision Support System -DSS ),хранилищ данных (Data Warehouse ),систем интеллектуального анализа данных (Data Mining ). Такие системы предназначены для нахождения зависимостей между данными (например, можно попытаться определить, как связан объем продаж товаров с характеристиками потенциальных покупателей), для проведения анализа "что если…".

    OLAP-приложения оперируют с большими массивами данных, уже накопленными в OLTP-приложениях, взятыми их электронных таблиц или из других источников данных. Такие системы характеризуются следующими признаками:

    Добавление в систему новых данных происходит относительно редко крупными блоками (например, раз в квартал загружаются данные по итогам квартальных продаж из OLTP-приложения).

    Данные, добавленные в систему, обычно никогда не удаляются.

    Перед загрузкой данные проходят различные процедуры "очистки", связанные с тем, что в одну систему могут поступать данные из многих источников, имеющих различные форматы представления для одних и тех же понятий, данные могут быть некорректны, ошибочны.

    Запросы к системе являются нерегламентированными и, как правило, достаточно сложными.

    Скорость выполнения запросов важна, но не критична.

    Данные OLAP-приложений обычно представлены в виде одного или нескольких гиперкубов, измерения которого представляют собой справочные данные, а в ячейках самого гиперкуба хранятся собственно данные. Например, можно построить гиперкуб, измерениями которого являются: время (в кварталах, годах), тип товара и отделения компании, а в ячейках хранятся объемы продаж. Такой гиперкуб будет содержать данных о продажах различных типов товаров по кварталам и подразделениям. Основываясь на этих данных, можно отвечать на вопросы вроде "у какого подразделения самые лучшие объемы продаж в текущем году?", или "каковы тенденции продаж отделений Юго-Западного региона в текущем году по сравнению с предыдущим годом?"

    Возвращаясь к проблеме нормализации данных, можно сказать, что в системах OLAP, использующих реляционную модель данных (ROLAP), данные целесообразно хранить в виде слабо нормализованных отношений, содержащих заранее вычисленные основные итоговые данные. Большая избыточность и связанные с ней проблемы тут не страшны, т.к. обновление происходит только в момент загрузки новой порции данных. При этом происходит как добавление новых данных, так и пересчет итогов.

    • < Назад
    • Вперёд >

    OLAP-системы

    OLAP (англ. online analytical processing, аналитическая обработка в реальном времени) - технология обработки данных, заключающаяся в подготовке суммарной (агрегированной) информации на основе больших массивов данных, структурированных по многомерному принципу. Реализации технологии OLAP являются компонентами программных решений класса Business Intelligence.

    Основоположник термина OLAP - Эдгар Кодд, предложил в 1993 году «12 законов аналитической обработки в реальном времени».

    Часто в компаниях существует несколько информационных систем – системы складского учета, бухгалтерские системы, ERP системы для автоматизации отдельных производственных процессов, системы сбора отчетности с подразделений компании, а также множество файлов, которые разбросаны по компьютерам сотрудников.

    Имея столько разрозненных источников информации, часто бывает очень сложно получить ответы на ключевые вопросы деятельности компании и увидеть общую картину. А когда нужная информация все же находится в одной из используемых систем или локальном файле, то она часто оказывается устаревшей или противоречит информации, полученной из другой системы.

    Данная проблема эффективно решается с помощью информационно-аналитических систем, построенных на базе OLAP-техологий (другие названия: OLAP-система, Система бизнес-аналитики, Business Intelligence). OLAP-системы интегрируют уже существующие системы учёта, предоставляя пользователю инструменты для анализа больших объёмов данных в реальном времени, динамического конструирования отчётов, мониторинга и прогнозирования ключевых бизнес-показателей.

    Преимущества OLAP-систем

    Ключевую роль в управлении компанией играет информация. Как правило, даже небольшие компании используют несколько информационных систем для автоматизации различных сфер деятельности. Получение аналитической отчётности в информационных системах, основанных на традиционных базах данных сопряжено с рядом ограничений:

    Разработка каждого отчёта требует работы программиста.



    Отчёты формируются очень медленно (зачастую несколько часов), замедляя при этом работу всей информационной системы.

    Данные, получаемые от различных структурных элементов компании не унифицированы и часто противоречивы.

    OLAP-системы, самой идеологией своего построения предназначены для анализа больших объёмов информации, позволяют преодолеть ограничения традиционных информационных систем.

    Создание OLAP-системы на предприятии позволит:

    · Интегрировать данные различных информационных систем, создав единую версию правды

    · Проектировать новые отчеты несколькими щелчками мыши без участия программистов.

    · В реальном времени анализировать данные по любым категориям и показателям бизнеса на любом уровне детализации.

    Производить мониторинг и прогнозирование ключевых показателей бизнеса

    При работе с OLAP-системой, вы всегда сможете оперативно найти ответы, на возникающие вопросы, увидеть картину в целом, проводить постоянный мониторинг состояния бизнеса. При этом вы можете быть уверенными, что используете только актуальную информацию.

    Итоги внедрения OLAP-системы

    Руководство получает полное ясное видение ситуации и единый механизм учёта, контроля и анализа.

    За счёт автоматизации внутренних бизнес-процессов и повышения производительности сотрудников, уменьшается потребность в человеческих ресурсах.

    Действие OLAP

    Причина использования OLAP для обработки запросов - это скорость. Реляционные БД хранят сущности в отдельных таблицах, которые обычно хорошо нормализованы. Эта структура удобна для операционных БД (системы OLTP), но сложные многотабличные запросы в ней выполняются относительно медленно.

    OLAP-структура, созданная из рабочих данных, называется OLAP-куб. Куб создаётся из соединения таблиц с применением схемы звезды или схемы снежинки. В центре схемы звезды находится таблица фактов, которая содержит ключевые факты, по которым делаются запросы. Множественные таблицы с измерениями присоединены к таблице фактов. Эти таблицы показывают, как могут анализироваться агрегированные реляционные данные. Количество возможных агрегирований определяется количеством способов, которыми первоначальные данные могут быть иерархически отображены.

    Например, все клиенты могут быть сгруппированы по городам или по регионам страны (Запад, Восток, Север и т. д.), таким образом, 50 городов, 8 регионов и 2 страны составят 3 уровня иерархии с 60 членами. Также клиенты могут быть объединены по отношению к продукции; если существуют 250 продуктов по 2 категориям, 3 группы продукции и 3 производственных подразделения, то количество агрегатов составит 16560. При добавлении измерений в схему, количество возможных вариантов быстро достигает десятков миллионов и более.

    OLAP-куб содержит в себе базовые данные и информацию об измерениях (агрегатах). Куб потенциально содержит всю информацию, которая может потребоваться для ответов на любые запросы. Из-за громадного количества агрегатов, зачастую полный расчёт происходит только для некоторых измерений, для остальных же производится «по требованию».

    Вместе с базовой концепцией существуют три типа OLAP:

    OLAP со многими измерениями (Multidimensional OLAP - MOLAP);

    реляционный OLAP (Relational OLAP - ROLAP);

    гибридный OLAP (Hybrid OLAP - HOLAP).

    MOLAP - это классическая форма OLAP, так что её часто называют просто OLAP. Она использует суммирующую БД, специальный вариант процессора пространственных БД и создаёт требуемую пространственную схему данных с сохранением как базовых данных, так и агрегатов.

    ROLAP работает напрямую с реляционным хранилищем, факты и таблицы с измерениями хранятся в реляционных таблицах, и для хранения агрегатов создаются дополнительные реляционные таблицы.

    HOLAP использует реляционные таблицы для хранения базовых данных и многомерные таблицы для агрегатов.

    Особым случаем ROLAP является ROLAP реального времени (Real-time ROLAP - R-ROLAP). В отличие от ROLAP в R-ROLAP для хранения агрегатов не создаются дополнительные реляционные таблицы, а агрегаты рассчитываются в момент запроса. При этом многомерный запрос к OLAP-системе автоматически преобразуется в SQL-запрос к реляционным данным.

    Каждый тип хранения имеет определённые преимущества, хотя есть разногласия в их оценке у разных производителей. MOLAP лучше всего подходит для небольших наборов данных, он быстро рассчитывает агрегаты и возвращает ответы, но при этом генерируются огромные объёмы данных. ROLAP оценивается как более масштабируемое решение, использующее к тому же наименьшее возможное пространство. При этом скорость обработки значительно снижается. HOLAP находится посреди этих двух подходов, он достаточно хорошо масштабируется и быстро обрабатывается. Архитектура R-ROLAP позволяет производить многомерный анализ OLTP-данных в режиме реального времени.

    Сложность в применении OLAP состоит в создании запросов, выборе базовых данных и разработке схемы, в результате чего большинство современных продуктов OLAP поставляются вместе с огромным количеством предварительно настроенных запросов. Другая проблема - в базовых данных. Они должны быть полными и непротиворечивыми

    Реализации OLAP

    Исторически первой многомерной системой управления базами данных, по существу являющейся OLAP-реализацией считается система Express, разработанная в 1970 году компанией IRI (позднее права на продукт были приобретены корпорацией Oracle и превращён в OLAP-опцию для Oracle Database). Термин OLAP ввёл Эдгар Кодд в публикации в журнале Computerworld в 1993 году, в которой он предложил 12 принципов аналитической обработки, по аналогии с 12 правилами для реляционных баз данных, сформулированными им же десятилетием ранее, в качестве референтного продукта, удовлетворяющего предложенным принципам, Кодд указал систему Essbase компании Arbor (поглощённой в 1997 году компанией Hyperion, которую, в свою очередь, в 2007 году купила Oracle). Примечательно, что впоследствии публикация была изъята из архивов Computerworld из-за возможного конфликта интересов, так как Кодд позднее оказывал консультационные услуги для Arbor.

    Другие известные OLAP-продукты: Microsoft Analysis Services (ранее называвшиеся OLAP Services, часть SQL Server), SAS OLAP Server, TM1, PowerPlay, SAP BW, MicroStrategy Ingelligence Server, Mondrian, Аналитический комплекс ПРОГНОЗ.

    C точки зрения реализации делятся на «физический OLAP» и «виртуальный» (реляционный, англ. Relational OLAP, ROLAP). «Физический», в свою очередь, в зависимости от реализации подразделяется на многомерный (англ. Multidimensional OLAP, MOLAP) и гибридный - (англ. Hybrid OLAP, HOLAP).

    В первом случае наличествует программа, на этапе предварительной загрузки данных в OLAP из источников выполняющая предварительный расчёт агрегатов (вычислений по нескольким исходным значениям, например «Итог за месяц»), которые затем сохраняются в специальную многомерную базу данных, обеспечивающую быстрое извлечение и экономичное хранение. Примеры таких продуктов - Microsoft Analysis Services, Oracle OLAP Option, Essbase, SAS OLAP Server, TM1, PowerPlay.

    Hybrid OLAP является комбинацией. Сами данные хранятся в реляционной базе данных, а агрегаты - в многомерной.

    В ROLAP-реализациях все данные хранятся и обрабатываются реляционных системах управления базами данных, а агрегаты могут не существовать вообще или создаваться по первому запросу в СУБД или кэше аналитического ПО. Примеры таких продуктов - SAP BW, Microstrategy Intelligence Server, Mondrian.

    С точки зрения пользователя все варианты выглядят похожими по возможностям. Наибольшее применение OLAP находит в продуктах для финансового планирования, хранилищах данных, решениях класса Business Intelligence.

    OLTP-системы (Системы оперативной обработки транзакций)

    OLTP (Online Transaction Processing), транзакционная система - обработка транзакций в реальном времени. Способ организации БД, при котором система работает с небольшими по размерам транзакциями, но идущими большим потоком, и при этом клиенту требуется от системы минимальное время отклика.

    Термин OLTP применяют также к системам (приложениям). OLTP-системы предназначены для ввода, структурированного хранения и обработки информации (операций, документов) в режиме реального времени.

    Проблема целостности – в обеспечении правильности данных БД в любой момент времени. Она может быть нарушена в след случаях: 1. при вводе и обновлении, когда подаются неверные сведения. 2. когда данным пользуются одновременно несколько userов. 3. при сбоях АПС.

    Решение проблем целостности надо рассматривать с программной и организационной точки зрения. Для ПОбл 1. надо ряд организац мероприятий (чтобы следили за вводом), user должен знать правила ввода и ограничения. Для проблем 2-3 – стандартные средства СУБД или спец программные модули. СУБД – 2 основных ограничения целостности: 1. структурные ограничения (задаются функциональными связями и проверяются путем проверки равенства значений БД) 2. ограничения реальных значений. Требуют, чтобы значения поля принадлежали некоторому диапазону, либо это зависимость между значениями некоторых полей. (типы данных и маски ввода). Ограничения могут задаваться АБД в любой момент, но СУБД может не принять ограничение (если много записей ему уже не удовлетворяют), если соответствие есть – записывается в словарь и используется. Ограничения различаются по уровню сложности:

    2. ограничения на совокупность атрибутов строки. (должность – разрядные ставки, края – города).

    3. ограничения одновременно на множество строк.

    Все эти ограничения статистические, но при переходе БД из 1 состояния в другое необходимо удовлетворять ограничениям целостности до начала всех изменений и после окончания всех, а не каждого. Такие ограничения называются отложенными и относительно их вводится понятие транзакций. Транзакция – законченное с точки зрения userа действие над БД. В то же время, это логическая единица работы системы. Транзакция реализует некоторую прикладную функцию, например, перевод денег с одного счета на другой в банковской системе.

    Должна обладать 4 свойствами: 1. Атомарность (неделимость): выполняется как одинарная операция доступа к БД, должна выполняться полностью или не выполняться совсем. 2. Согласованность – гарантирует взаимную целостность данных после окончания обработки транзакций. 3. Изолированность (каждая транзакция может изменять данное, которое временно находится в несогласованном состоянии). При этом доступ других транзакций к этим данным запрещен, пока транзакция не завершится. 4. долговечности – если транзакция выполнена успешно, то изменения не будут потеряны. Результатом выполнения транзакции может быть её фиксация (действие по фиксации изменений в БД) или откат (отмена транзакции и возврат БД в состояние до начала её). Механизм фиксации и откат основан на использовании журнала транзакций, где сохраняется состояние ДО (в нескольких итерациях) и ПОСЛЕ. Некоторые диалекты SQL включают операторы промежуточной фиксации (откат от точки к точке).

    Мониторы обработки транзакций (Transaction Processing Monitor - TPM)- это программные системы (относят к посредническому или промежуточному программному обеспечению), решающие задачу эффективного управления информационно-вычислительными ресурсами в распределенной системе. Они представляют собой гибкую, открытую среду для разработки и управления мобильными приложениями, ориентированными на оперативную обработку распределенных транзакций. В числе важнейших характеристик TPM - масштабируемость, поддержка функциональной полноты и целостности приложений, достижение максимальной производительности при обработке данных при невысоких стоимостных показателях, поддержка целостности данных в гетерогенной среде. TPM опираются на трехзвенную модель "клиент-сервер"

    На современном рынке мониторов транзакций основными "действующими лицами" являются такие системы, как ACMS (DEC), CICS (IBM), TOP END (NCR), TUXEDO Sytem (Novell).