Nand флэш памяти что такое. Для чего используется кэш-буфер на SSD-дисках? Какой тип памяти в SSD лучше

Всем привет! Буквально на днях встретил своего давнишнего приятеля. Мы разговорились, и он, со словами «Смотри с каким телефоном я сейчас хожу!», продемонстрировал свою старенькую кнопочную Nokia. Выяснилось, что на его iPhone стала постоянно «слетать» прошивка - пришлось отдать смартфон в сервисный центр. Казалось бы, обычное дело...

Однако, для приятеля оказался необычным тот перечь работ, которые будет проводить сервис. Полная диагностика, обновление программного обеспечения (при необходимости) и другие «обычные штуки» - здесь все стандартно и понятно. Главный же вопрос вызвала вот такая фраза мастера - «скорей всего, надо перекатывать Nand Flash».

Я, конечно, в сервисе не показал что не понимаю о чем речь - дескать и так все знаю без вас. Вы главное - делайте. Но пришел домой и сразу полез «гуглить» - а что это вообще такое, Nand Flash? И на фига его куда-то катать внутри iPhone?

Посмеялись с ним, разошлись, а я подумал - почему бы не написать коротенькую заметку на эту тему? Много времени это не займет, а людям, которые столкнулись с той же проблемой что и мой знакомый, станет чуточку понятней, что вообще происходит с их смартфоном. Подумал - сделал. Поехали!:)

Что такое Nand Flash в iPhone?

Это внутренняя память устройства. Да, да, то самое и которого очень часто не хватает владельцам iPhone на 16 GB.

Грубо говоря, Nand Flash в iPhone 7 32 GB это и есть те самые 32 GB внутренней памяти.

Расположена память на основной системной плате устройства и ни чем примечательным не выделяется - самый обычный чип.

Естественно, это никакая не флешка - нельзя разобрать iPhone, легко отсоединить Nand Flash, поставить другую и думать что все будет «ОК». Не будет. Хотя, стоит оговориться, что в некоторых случаях это все-таки возможно. Но об это чуть дальше. А пока переходим к неполадкам...

Причины неисправности

Вариантов не очень много, и все они, как правило «стандартные»:

  1. Падения устройства.
  2. Иные физические повреждения.
  3. Попадание жидкости.
  4. Брак.
  5. Джейлбрейк.

Здесь особо и расписывать нечего - понятное дело, что если устройство бросать и заливать водой, то это скажется на его работоспособности.

Хотя, отдельно все-таки отмечу такой пункт, как заводской брак - такое тоже очень даже возможно. Я был свидетелем подобной ситуации - iPhone только что куплен, а работать толком не работает - перезагружается, при восстановлении показывает ошибки и вообще ведет себя странно. Отдали в сервис, как итог - брак Nand Flash памяти и последующая замена устройства.

Симптомы неисправности Flash памяти iPhone

Каких-то четких и определенных симптомов у этой неисправности нет (на экране не выскакивает надпись - у вашего устройства проблемы с памятью), поэтому обо всем этом можно догадаться только по косвенным признакам:


Кстати, об ошибках...

Ошибки iTunes, указывающие на неисправность Nand Flash

Самый верный способ борьбы с различными неполадками в работе устройства. Однако, если у iPhone существуют проблемы с Nand Flash памятью, то процесс восстановления может прерываться и сопровождаться следующими характерными ошибками:


Но, важно помнить вот о чем - iTunes устроен таким образом, что одна и та же цифра ошибки может иметь несколько причин.

Например, ошибка 4013 может сигнализировать как о проблемах с самой микросхемой, так и о неоригинальности использования провода для подключения к ПК.

Как видите, разброс очень большой - от простого провода, до очень сложного ремонта. Поэтому, использовать этот перечень ошибок для предварительного анализа ситуации можно, а вот слепо доверять - нельзя.

Ремонт Nand Flash памяти - возможно ли это?

Возможно. Но, конечно же, не «в домашних условиях». Более того, далеко не все сервисные центры умеют проделывать эту операцию. Например, «в палатке на рынке» вам с большой долей вероятности помочь не смогут - там просто не будет необходимого оборудования. Да и навык, какой-никакой, должен быть.

В который раз отдельно замечу - если у вашего iPhone не закончился гарантийный срок (), то ничего выдумывать не нужно - . С большой долей вероятности вы получите взамен новое устройство.

Если с гарантией «пролет», а ремонт Nand Flash памяти все-таки необходим, то у сервисного центра есть два варианта исправления ситуации:


Кстати, если говорить про оборудование для прошивки Nand Flash, то подобные программаторы достаточно разнообразны, но одна вещь их все-таки объединяет - цена. Все они стоят приличных денег - далеко не каждый может позволить себе такую штуку.

Какой вывод можно сделать из всего этого? Проблемы с памятью iPhone - это достаточно серьезная поломка, которую очень тяжело исправить самостоятельно. Но и безнадежной ситуацию назвать нельзя. Главное - найти хороший сервисный центр с грамотными специалистами и необходимым оборудованием. И тогда iPhone еще долго будет радовать вас своей работой!

P.S. Да уж, короткой заметки не получилось:) Впрочем, что есть, то есть - не удалять же теперь. Да и информация полезная - кому-нибудь да пригодится. Согласны? Ставьте «лайки», жмите на кнопки социальных сетей - поддержите автора! Он старался, честно. Спасибо!

P.S.S. Остались какие-то вопросы? Есть чем дополнить статью или хочется рассказать свою историю? Для этого существуют комментарии - пишите смело!

Флэш-память представляет собой тип долговечной памяти для компьютеров, у которой содержимое можно перепрограммировать или удалить электрическим методом. В сравнении с Electrically Erasable Programmable Read Only Memory действия над ней можно выполнять в блоках, которые находятся в разных местах. Флэш-память стоит намного меньше, чем EEPROM, поэтому она и стала доминирующей технологией. В особенности в ситуациях, когда необходимо устойчивое и длительное сохранение данных. Ее применение допускается в самых разнообразных случаях: в цифровых аудиоплеерах, фото- и видеокамерах, мобильных телефонах и смартфонах, где существуют специальные андроид-приложения на карту памяти. Кроме того, используется она и в USB-флешках, традиционно применяемых для сохранения информации и ее передачи между компьютерами. Она получила определенную известность в мире геймеров, где ее часто задействуют в промах для хранения данных по прогрессу игры.

Общее описание

Флэш-память представляет собой такой тип, который способен сохранять информацию на своей плате длительное время, не используя питания. В дополнение можно отметить высочайшую скорость доступа к данным, а также лучшее сопротивление к кинетическому шоку в сравнении с винчестерами. Именно благодаря таким характеристикам она стала настольно популярной для приборов, питающихся от батареек и аккумуляторов. Еще одно неоспоримое преимущество состоит в том, что когда флэш-память сжата в сплошную карту, ее практически невозможно разрушить какими-то стандартными физическими способами, поэтому она выдерживает кипящую воду и высокое давление.

Низкоуровневый доступ к данным

Способ доступа к данным, находящимся во флэш-памяти, сильно отличается от того, что применяется для обычных видов. Низкоуровневый доступ осуществляется посредством драйвера. Обычная RAM сразу же отвечает на призывы чтения информации и ее записи, возвращая результаты таких операций, а устройство флеш-памяти таково, что потребуется время на размышления.

Устройство и принцип работы

На данный момент распространена флэш-память, которая создана на однотранзисторных элементах, имеющих «плавающий» затвор. Благодаря этому удается обеспечить большую плотность хранения данных в сравнении с динамической ОЗУ, для которой требуется пара транзисторов и конденсаторный элемент. На данный момент рынок изобилует разнообразными технологиями построения базовых элементов для такого типа носителей, которые разработаны лидирующими производителями. Отличает их количество слоев, методы записи и стирания информации, а также организация структуры, которая обычно указывается в названии.

На текущий момент существует пара типов микросхем, которые распространены больше всего: NOR и NAND. В обоих подключение запоминающих транзисторов производится к разрядным шинам - параллельно и последовательно соответственно. У первого типа размеры ячеек довольно велики, и имеется возможность для быстрого произвольного доступа, что позволяет выполнять программы прямо из памяти. Второй характеризуется меньшими размерами ячеек, а также быстрым последовательным доступом, что намного удобнее при необходимости построения устройств блочного типа, где будет храниться информация большого объема.

В большинстве портативных устройств твердотельный накопитель использует тип памяти NOR. Однако сейчас все популярнее становятся приспособления с интерфейсом USB. В них применяется память типа NAND. Постепенно она вытесняет первую.

Главная проблема — недолговечность

Первые образцы флешек серийного производства не радовали пользователей большими скоростями. Однако теперь скорость записи и считывания информации находится на таком уровне, что можно просматривать полноформатный фильм либо запускать на компьютере операционную систему. Ряд производителей уже продемонстрировал машины, где винчестер заменен флеш-памятью. Но у этой технологии имеется весьма существенный недостаток, который становится препятствием для замены данным носителем существующих магнитных дисков. Из-за особенностей устройства флеш-памяти она позволяет производить стирание и запись информации ограниченное число циклов, которое является достижимым даже для малых и портативных устройств, не говоря о том, как часто это делается на компьютерах. Если использовать этот тип носителя как твердотельный накопитель на ПК, то очень быстро настанет критическая ситуация.

Связано это с тем, что такой накопитель построен на свойстве полевых транзисторов сохранять в «плавающем» затворе отсутствие или наличие которого в транзисторе рассматривается в качестве логической единицы или ноля в двоичной Запись и стирание данных в NAND-памяти производятся посредством туннелированных электронов методом Фаулера-Нордхейма при участии диэлектрика. Для этого не требуется что позволяет делать ячейки минимальных размеров. Но именно данный процесс приводит к ячеек, так как электрический ток в таком случае заставляет электроны проникать в затвор, преодолевая диэлектрический барьер. Однако гарантированный срок хранения подобной памяти составляет десять лет. Износ микросхемы происходит не из-за чтения информации, а из-за операций по ее стиранию и записи, поскольку чтение не требует изменения структуры ячеек, а только пропускает электрический ток.

Естественно, производители памяти ведут активные работы в направлении увеличения срока службы твердотельных накопителей данного типа: они устремлены к обеспечению равномерности процессов записи/стирания по ячейкам массива, чтобы одни не изнашивались больше других. Для равномерного распределения нагрузки преимущественно используются программные пути. К примеру, для устранения подобного явления применяется технология «выравнивания износа». При этом данные, часто подвергаемые изменениям, перемещаются в адресное пространство флеш-памяти, потому запись осуществляется по разным физическим адресам. Каждый контроллер оснащается собственным алгоритмом выравнивания, поэтому весьма затруднительно сравнивать эффективность тех или иных моделей, так как не разглашаются подробности реализации. Поскольку с каждым годом объемы флешек становятся все больше, необходимо применять все более эффективные алгоритмы работы, позволяющие гарантировать стабильность функционирования устройств.

Устранение проблем

Одним из весьма эффективных путей борьбы с указанным явлением стало резервирование определенного объема памяти, за счет которого обеспечивается равномерность нагрузки и коррекция ошибок посредством особых алгоритмов логической переадресации для подмены физических блоков, возникающих при интенсивной работе с флешкой. А для предотвращения утраты информации ячейки, вышедшие из строя, блокируются или заменяются на резервные. Такое программное распределение блоков дает возможность обеспечения равномерности нагрузки, увеличив количество циклов в 3-5 раз, однако и этого мало.

И другие виды подобных накопителей характеризуются тем, что в их служебную область заносится таблица с файловой системой. Она предотвращает сбои чтения информации на логическом уровне, например, при некорректном отключении либо при внезапном прекращении подачи электрической энергии. А так как при использовании сменных устройств системой не предусмотрено кэширование, то частая перезапись оказывает самое губительное воздействие на таблицу размещения файлов и оглавление каталогов. И даже специальные программы для карт памяти не способны помочь в данной ситуации. К примеру, при однократном обращении пользователь переписал тысячу файлов. И, казалось бы, только по одному разу применил для записи блоки, где они размещены. Но служебные области переписывались при каждом из обновлений любого файла, то есть таблицы размещения прошли эту процедуру тысячу раз. По указанной причине в первую очередь выйдут из строя блоки, занимаемые именно этими данными. Технология «выравнивания износа» работает и с такими блоками, но эффективность ее весьма ограничена. И тут не важно, какой вы используете компьютер, флешка выйдет из строя ровно тогда, когда это предусмотрено создателем.

Стоит отметить, что увеличение емкости микросхем подобных устройств привело лишь к тому, что общее количество циклов записи сократилось, так как ячейки становятся все меньше, поэтому требуется все меньше и напряжения для рассеивания оксидных перегородок, которые изолируют «плавающий затвор». И тут ситуация складывается так, что с увеличением емкости используемых приспособлений проблема их надежности стала усугубляться все сильнее, а class карты памяти теперь зависит от многих факторов. Надежность работы подобного решения определяется его техническими особенностями, а также ситуацией на рынке, сложившейся на данный момент. Из-за жесткой конкуренции производители вынуждены снижать себестоимость продукции любым путем. В том числе и благодаря упрощению конструкции, использованию комплектующих из более дешевого набора, ослаблению контроля за изготовлением и иными способами. К примеру, карта памяти "Самсунг" будет стоить дороже менее известных аналогов, но ее надежность вызывает гораздо меньше вопросов. Но и здесь сложно говорить о полном отсутствии проблем, а уж от устройств совсем неизвестных производителей сложно ожидать чего-то большего.

Перспективы развития

При наличии очевидных достоинств имеется целый ряд недостатков, которыми характеризуется SD-карта памяти, препятствующих дальнейшему расширению ее области применения. Именно поэтому ведутся постоянные поиски альтернативных решений в данной области. Конечно, в первую очередь стараются совершенствовать уже существующие типы флеш-памяти, что не приведет к каким-то принципиальным изменениям в имеющемся процессе производства. Поэтому не стоит сомневаться только в одном: фирмы, занятые изготовлением этих видов накопителей, будут стараться использовать весь свой потенциал, перед тем как перейти на иной тип, продолжая совершенствовать традиционную технологию. К примеру, карта памяти Sony выпускается на данный момент в широком диапазоне объемов, поэтому предполагается, что она и будет продолжать активно распродаваться.

Однако на сегодняшний день на пороге промышленной реализации находится целый комплекс технологий альтернативного хранения данных, часть из которых можно внедрить сразу же при наступлении благоприятной рыночной ситуации.

Ferroelectric RAM (FRAM)

Технология ферроэлектрического принципа хранения информации (Ferroelectric RAM, FRAM) предлагается с целью наращивания потенциала энергонезависимой памяти. Принято считать, что механизм работы имеющихся технологий, заключающийся в перезаписи данных в процессе считываниям при всех видоизменениях базовых компонентов, приводит к определенному сдерживанию скоростного потенциала устройств. А FRAM - это память, характеризующаяся простотой, высокой надежностью и скоростью в эксплуатации. Эти свойства сейчас характерны для DRAM - энергонезависимой оперативной памяти, существующей на данный момент. Но тут добавится еще и возможность длительного хранения данных, которой характеризуется Среди достоинств подобной технологии можно выделить стойкость к разным видам проникающих излучений, что может оказаться востребованным в специальных приборах, которые используются для работы в условиях повышенной радиоактивности либо в исследованиях космоса. Механизм хранения информации здесь реализуется за счет применения сегнетоэлектрического эффекта. Он подразумевает, что материал способен сохранять поляризацию в условиях отсутствия внешнего электрического поля. Каждая ячейка памяти FRAM формируется за счет размещения сверхтонкой пленки из сегнетоэлектрического материала в виде кристаллов между парой плоских металлических электродов, формирующих конденсатор. Данные в этом случае хранятся внутри кристаллической структуры. А это предотвращает эффект утечки заряда, который становится причиной утраты информации. Данные в FRAM-памяти сохраняются даже при отключении напряжения питания.

Magnetic RAM (MRAM)

Еще одним типом памяти, который на сегодняшний день считается весьма перспективным, является MRAM. Он характеризуется довольно высокими скоростными показателями и энергонезависимостью. в данном случае служит тонкая магнитная пленка, размещенная на кремниевой подложке. MRAM представляет собой статическую память. Она не нуждается в периодической перезаписи, а информация не будет утрачена при выключении питания. На данный момент большинство специалистов сходится во мнении, что этот тип памяти можно назвать технологией следующего поколения, так как существующий прототип демонстрирует довольно высокие скоростные показатели. Еще одним достоинством подобного решения является невысокая стоимость чипов. Флэш-память изготавливается в соответствии со специализированным КМОП-процессом. А микросхемы MRAM могут производиться по стандартному технологическому процессу. Причем материалами могут послужить те, что используются в обычных магнитных носителях. Производить крупные партии подобных микросхем гораздо дешевле, чем всех остальных. Важное свойство MRAM-памяти состоит в возможности мгновенного включения. А это особенно ценно для мобильных устройств. Ведь в этом типе значение ячейки определяется магнитным зарядом, а не электрическим, как в традиционной флеш-памяти.

Ovonic Unified Memory (OUM)

Еще один тип памяти, над которым активно работают многие компании, - это твердотельный накопитель на базе аморфных полупроводников. В его основу заложена технология фазового перехода, которая аналогична принципу записи на обычные диски. Тут фазовое состояние вещества в электрическом поле меняется с кристаллического на аморфное. И это изменение сохраняется и при отсутствии напряжения. От традиционных оптических дисков такие устройства отличаются тем, что нагрев происходит за счет действия электрического тока, а не лазера. Считывание в данном случае осуществляется за счет разницы в отражающей способности вещества в различных состояниях, которая воспринимается датчиком дисковода. Теоретически подобное решение обладает высокой плотностью хранения данных и максимальной надежностью, а также повышенным быстродействием. Высок здесь показатель максимального числа циклов перезаписи, для чего используется компьютер, флешка в этом случае отстает на несколько порядков.

Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM)

Эта технология тоже базируется на основе фазовых переходов, когда в одной фазе вещество, используемое в носителе, выступает в качестве непроводящего аморфного материала, а во второй служит кристаллическим проводником. Переход запоминающей ячейки из одного состояния в другое осуществляется за счет электрических полей и нагрева. Такие чипы характеризуются устойчивостью к ионизирующему излучению.

Information-Multilayered Imprinted CArd (Info-MICA)

Работа устройств, построенных на базе такой технологии, осуществляется по принципу тонкопленочной голографии. Информация записывается так: сначала формируется двумерный образ, передаваемый в голограмму по технологии CGH. Считывание данных происходит за счет фиксации луча лазера на краю одного из записываемых слоев, служащих оптическими волноводами. Свет распространяется вдоль оси, которая размещена параллельно плоскости слоя, формируя на выходе изображение, соответствующее информации, записанной ранее. Начальные данные могут быть получены в любой момент благодаря алгоритму обратного кодирования.

Этот тип памяти выгодно отличается от полупроводниковой за счет того, что обеспечивает высокую плотность записи, малое энергопотребление, а также низкую стоимость носителя, экологическую безопасность и защищенность от несанкционированного использования. Но перезаписи информации такая карта памяти не допускает, поэтому может служить только в качестве долговременного хранилища, замены бумажного носителя либо альтернативы оптическим дискам для распространения мультимедийного контента.

Первые SSD , или твердотельные накопители, использующие флэш-память , появились в 1995 году, и использовались исключительно в военной и аэрокосмической сферах. Огромная на тот момент стоимость компенсировалась уникальными характеристиками, позволяющими эксплуатацию таких дисков в агрессивных средах при широком диапазоне температур.

В масс-маркете накопители SSD появились не так давно, но быстро стали популярны, так как являются современной альтернативой стандартному жёсткому диску (HDD ). Разберёмся, по каким параметрам нужно выбирать твердотельный накопитель, и что он из себя вообще представляет.

Устройство

По привычке, SSD называют «диском», но его скорее можно назвать «твердотельным параллелепипедом », поскольку движущихся частей в нём нет, и ничего по форме похожего на диск – тоже. Память в нём основана на физических свойствах проводимости полупроводников, так что SSD – полупроводниковое (или твердотельное) устройство, тогда как обычный жёсткий диск можно назвать электро-механическим устройством.

Аббревиатура SSD как раз и означает «solid-state drive », то есть, буквально, «твердотельный накопитель ». Он состоит из контроллера и чипов памяти.

Контроллер – наиболее важная часть устройства, которая связывает память с компьютером. Основные характеристики SSD – скорость обмена данных, энергопотребление, и т.п., зависят именно от него. Контроллер имеет свой микропроцессор, работающий по предустановленной программе, и может выполнять функции исправления ошибок кода, предотвращения износа, чистки от мусора.

Память в накопителях может быть как энергонезависимой (NAND ), так и энергозависимой (RAM ).

NAND-память поначалу выигрывала у HDD только в скорости доступа к произвольным блокам памяти, и только с 2012 года скорость чтения/записи также многократно выросла. Сейчас в масс-маркете накопители SSD представлены моделями именно с энергонезависимой NAND -памятью.

RAM память отличается сверхбыстрыми скоростями чтения и записи, и построена по принципы оперативной памяти компьютера. Такая память энергозависима – при отсутствии питания данные пропадают. Используется как правило в специфичных сферах, вроде ускорения работы с базами данных, в продаже встретить трудно.

Отличия SSD от HDD

SSD отличает от HDD в первую очередь, физическое устройство. Благодаря этому он может похвастаться некоторыми преимуществами, но имеет и ряд серьёзных недостатков.

Основные преимущества:

· Быстродействие. Даже по техническим характеристикам видно, что скорость чтения/записи у SSD выше в несколько раз, но на практике быстродействие может различаться в 50-100 раз.
· Отсутствие движущихся частей, а соответственно, шума. Также это означает высокую стойкость к механическим воздействиям.
· Скорость произвольного доступа к памяти гораздо выше. В результате скорость работы не зависит от расположения файлов и их фрагментации.
· Гораздо меньшая уязвимость к электромагнитным полям.
· Малые габариты и вес, низкое энергопотребление.

Недостатки:

· Ограничение ресурса по циклам перезаписи. Означает, что перезаписать отдельную ячейку можно определённое количество раз – в среднем, этот показатель варьируется от 1 000 до 100 000 раз.
· Стоимость гигабайта объёма пока достаточно высока, и превосходит стоимость обычного HDD в несколько раз. Однако, этот недостаток со временем исчезнет.
· Сложность или даже невозможность восстановления удалённых или утерянных данных, связанная с применяемой накопителем аппаратной командой TRIM , и с высокой чувствительностью к перепадам напряжения питания: при таком повреждении чипов памяти информация с них теряется безвозвратно.

В целом, у твердотельных накопителей есть ряд преимуществ, которыми стандартные жёсткие диски не обладают – в случаях, когда главную роль играют быстродействие, скорость доступа, размеры и устойчивость к механическим нагрузкам, SDD настойчиво вытесняет HDD .

Какой объём SSD понадобится?

Первое, на что стоит обратить внимание при выборе SSD – его объём. В продаже есть модели с ёмкостью от 32 до 2000 Гб.

Решение зависит от варианта использования – вы можете установить на накопитель только операционную систему, и ограничиться объёмом SSD в 60-128 Гб , что будет вполне достаточно для Windows и установки основных программ.

Второй вариант – использовать SSD как основную медиа-библиотеку, но тогда вам понадобится диск объёмом в 500-1000 Гб , что выйдет довольно дорого. Это имеет смысл, только если вы работаете с большим количеством файлов, к которым нужно обеспечить действительно быстрый доступ. Применительно к рядовому пользователю – не очень рациональное соотношение цена/скорость.

Но есть и ещё одно свойство твердотельных накопителей – в зависимости от объёма скорость записи может сильно отличаться. Чем больше объём диска, тем, как правило, больше скорость записи. Это связано с тем, что SSD способен параллельно использовать сразу несколько кристаллов памяти, а количество кристаллов растёт вместе с объёмом. То есть в одинаковых моделях SSD с разной ёмкостью в 128 и 480 Гб разница в скорости может различаться примерно в 3 раза.

Учитывая данную особенность, можно сказать, что сейчас наиболее оптимальным по цене/скорости выбором можно назвать 120-240 гигабайтные модели SSD , их хватит для установки системы и наиболее важного софта, а может быть, и для нескольких игр.

Интерфейс и форм-фактор

2.5" SSD

Самым распространённым форм-фактором SSD является формат 2,5 дюйма. Представляет собой «брусок» размерами примерно 100х70х7мм, у разных производителей они могут слегка различаться (±1мм). Интерфейс у 2.5” накопителей, как правило, SATA3 (6 Гбит/с ).

Преимущества формата 2.5":

  • Распространённость на рынке, доступен любой объём
  • Удобство и простота использования, совместим с любыми материнскими платами
  • Демократичная цена
Недостатки формата:
  • Относительно низкая скорость среди ssd - максимально до 600 Мб/с на один канал, против, например 1 Гб/с у интерфейса PCIe
  • Контроллеры AHCI, которые были разработаны для классических жёстких дисков
Если вам нужен накопитель, который удобно и легко монтировать в корпус ПК, а ваша материнская плата имеет только разъёмы SATA2 или SATA3 , то 2.5” SSD накопитель – это ваш выбор. Система и офисные программы будет загружаться очевидно быстрее по сравнению с HDD, а большой разницы с более скоростными решениями обычный пользователь не заметит.

mSATA SSD

Существует более компактный форм-фактор - mSATA , размерами 30х51х4 мм. Имеет смысл использовать в ноутбуках и любых других компактных устройствах, где установка обычного 2.5” накопителя нецелесообразна. Если у них, конечно, есть разъём mSATA . По скорости - это всё та же спецификация SATA3 (6 Гбит/с ), и не отличается от 2.5".

M.2 SSD

Есть ещё один, самый компактный форм-фактор M.2 , постепенно сменяющий mSATA . Предназначен, главным образом, для ноутбуков. Размеры - 3.5х22х42(60,80) мм. Есть три разных длины планок - 42, 60 и 80 мм, обратите внимание на совместимость при установке в свою систему. Современные материнские платы предлагают, по крайней мере, один слот U.2 под формат M.2.

M.2 может быть как с интерфейсом SATA , так и PCIe . Разница между этими вариантами интерфейса в скорости, и при том довольно большая - SATA накопители могут похвастаться скоростью в среднем 550 Мб/с, тогда как PCIe, в зависимости от поколения, может предложить 500 Мб/с на одну линию для PCI-E 2.0 , и скорость до 985 Мб/с на одну линию PCI-E 3.0 . Таким образом, твердотельный накопитель, установленный в слот PCIe x4 (с четырьмя линиями), может обмениваться данными на скорости до 2 Гб/с в случае PCI Express 2.0 и до почти 4 Гб/с – при использовании PCI Express третьего поколения.

Различия в цене при этом существенны, диск форм-фактора M.2 с интерфейсом PCIe обойдётся в среднем в два раза дороже интерфейса SATA при одинаковом объёме.

Форм-фактор имеет разъём U.2, который может иметь коннекторы, отличающиеся друг от друга ключами – специальными «вырезами» в них. Существуют ключи B и , а также B&M . Отличаются скоростью по шине PCIe : ключ М обеспечит скорость до PCIe х4 , ключ M скорость до PCIe х2 , как и совмещённый ключ B&M .

B -коннектор несовместим с M -разъёмом, M -коннектор соответственно, с B -разъёмом, а B&M коннектор совместим с любым. Будьте внимательны, приобретая формата M.2 , так как материнская плата, ноутбук или планшет должны иметь подходящий разъём.

PCI-E SSD

Наконец, последний существующий форм-фактор – , как плата расширения PCI-E . Монтируется, соответственно в слот PCI-E , обладают самой высокой скоростью, порядка 2000 Мбайт/с на чтение, и 1000 Мбайт/с на запись . Такие скорости встанут вам очень дорого: очевидно, что выбирать такой накопитель стоит для профессиональных задач.

NVM Express

Существуют также SSD , имеющие новый логический интерфейс NVM Express , разработанный специально для твердотельных накопителей. От старого AHCI он отличается ещё более низкими задержками доступа и высокой параллельностью работы чипов памяти за счёт нового набора аппаратных алгоритмов.
На рынке есть модели как c разъёмом M.2 , так и в PCIe . Минус PCIe тут только в том, что он займёт важный слот, который может пригодиться и под другую плату.

Поскольку стандарт NVMe предназначен именно для флэш-памяти, он учитывает её особенности, тогда как AHCI всё же только компромисс. Поэтому, NVMe - будущее твердотельных накопителей, и со временем он будет только оптимизироваться.

Какой тип памяти в SSD лучше?

Разберёмся в типах памяти SSD . Это одна из главных характеристик SSD, определяющая ресурс перезаписи ячеек и скорость.

MLC (Multi-Level Cell) - наиболее популярный тип памяти. Ячейки содержат 2 бита, в отличии от 1-го бита в старом типе SLC , который уже почти не продаётся. Благодаря этому – больший объём, а значит, меньшая стоимость. Ресурс записи от 2000 до 5000 циклов перезаписи. При этом «перезапись» означает перезапись каждой ячейки диска. Следовательно, для модели в 240 Гб, например, можно записать как минимум 480 Тб информации. Так что, ресурса такого SSD даже при постоянном интенсивном использовании должно хватить лет эдак на 5-10 (за которые он уже всё равно сильно устареет). А при домашнем использовании его хватит и вовсе на 20 лет, так что ограниченность циклов перезаписи можно вообще не брать во внимание. MLC – это лучшее сочетание надёжность/цена.

TLC (Triple-Level Cell) - из названия следует, что здесь в одной ячейки хранится сразу 3 бита данных. Плотность записи здесь в сравнении с MLC выше на целых 50% , а значит, ресурс перезаписи меньше – всего от 1000 циклов. Скорость доступа тоже ниже из-за большей плотности. Стоимость сейчас не сильно отличается от MLC . Давно и широко используется во флэшках. Срок службы также достаточный для домашнего решения, но подверженность неисправимым ошибкам и «отмиранию» ячеек памяти заметно выше, причём во время всего срока службы.

3D NAND – это скорее форма организации памяти, а не её новый тип. Существует как MLC , так и TLC 3D NAND . Такая память имеет вертикально размещённые ячейки памяти, и отдельный кристалл памяти в ней имеет несколько уровней ячеек. Получается, что у ячейки появляется третья пространственная координата, отсюда и приставка "3D" в названии памяти - 3D NAND . Отличается очень низким количеством ошибок и высокой выносливостью из-за более крупного техпроцесса в 30-40нМ.
Гарантия производителя на отдельные модели достигает 10 лет использования, но стоимость высока. Самый надёжный тип памяти из существующих.

Отличия дешёвых SSD от дорогих

Диски одного и того же объёма могут даже у одного производителя сильно отличаться по цене. Дешёвый SSD от дорого может отличаться следующими моментами:

· Более дешёвый тип памяти. По возрастанию стоимости/надёжности, условно: TLC MLC 3D NAND .
· Более дешёвый контроллер. Также влияет на скорость чтения/записи.
· Буфер обмена. Самый дешёвые SSD могут вовсе не иметь буфера обмена, это не сильно удешевляет их, но заметно снижает быстродействие.
· Системы защиты. Например, в дорогих моделях есть защита от прерывания питания в виде резервных конденсаторов, позволяющих корректно завершить операцию записи, и не потерять данные.
· Брэнд. Само собой, более раскрученный брэнд будет дороже, что не всегда означает техническое превосходство.

Вывод. Что выгоднее купить?

Можно с уверенностью сказать, что современные SSD накопители достаточно надёжны. Боязнь потери данных и негативное отношение к твердотельным накопителям, как классу, на данный момент уже совсем неоправданны. Если говорить о более-менее популярных брэндах, то даже дешёвая TLC память подойдёт для бюджетного домашнего использования, и её ресурса хватит вам на несколько лет как минимум. Многие производители к тому же дают гарантию в 3 года.

Итак, если вы ограничены в средствах, то ваш выбор – это ёмкостью в 60-128 Гб для установки системы и часто используемых приложений. Тип памяти не столь критичен для домашнего использования – TLC это будет или MLC , диск устареет раньше, чем выработается ресурс. При прочих равных, конечно, стоит выбрать MLC .

Если вы готовы заглянуть в средний ценовой сегмент и цените надёжность, то лучше рассмотреть SSD MLC на 200-500 Гб . За старшие модели придётся выложить около 12 тысяч рублей. При этом, объёма вам хватит практически для всего, что должно работать быстро на домашнем пк. Также можно взять модели ещё более повышенной надёжности с кристаллами памяти 3D NAND .

Если ваша боязнь износа флэш-памяти достигает панического уровня, то стоит смотреть на новые (и дорогие) технологии в виде формата накопителей 3D NAND . А если без шуток, то это будущее SSD – высокая скорость и высокая надёжность здесь объединены. Подобный накопитель подойдёт даже для важных баз данных серверов, поскольку ресурс записи здесь достигает петабайт , а количество ошибок минимально.

В отдельную группу хочется выделить накопители с интерфейсом PCI-E . Он обладают высокой скоростью чтения и записи (1000-2000 Мб/с ), и в среднем дороже прочих категорий. Если во главу угла ставить именно быстродействие, то это лучший выбор. Недостаток - занимает универсальный слот PCIe, у материнских плат компактных форматов слот PCIe может быть всего один.

Вне конкуренции - SSD с логическим интерфейсом NVMe , скорость чтения которых переваливает за 2000 Мб/с. В сравнении с компромиссной для SSD логикой AHCI , имеет гораздо большую глубину очереди и параллелизм. Высокая стоимость на рынке, и лучшие характеристики - выбор энтузиастов или профессионалов.

ВведениеТвердотельные накопители или SSD (solid-state drive), то есть такие, в основе которых лежат не магнитные пластины, а флеш-память, стали одной из самых впечатляющих компьютерных технологий последнего десятилетия. По сравнению с классическими жёсткими дисками они предлагают заметно более высокие скорости передачи данных и на порядки более низкое время отклика, и поэтому их применение поднимает отзывчивость дисковой подсистемы на совершенно новый уровень. В результате, компьютер, в котором используется твердотельный накопитель, предлагает пользователю по-настоящему стремительную реакцию на обычные действия вроде загрузки операционной системы, запуска приложений и игр или открытия файлов. И это значит, что нет никаких причин для того, чтобы игнорировать прогресс и не использовать SSD при сборке новых или при модернизации старых персональных компьютеров.

Появление столь прорывной технологии было по достоинству оценено многими пользователями. Спрос на твердотельные накопители потребительского уровня лавинообразно вырос, а к производству SSD стали присоединяться всё новые и новые компании, старающиеся урвать свою долю на растущем и перспективном рынке. С одной стороны, это хорошо – высокая конкуренция порождает установление выгодных для потребителей цен. Но с другой – на рынке клиентских твердотельных накопителей возникает бардак и путаница. Десятки производителей предлагают сотни различающихся между собой по характеристикам SSD, и найти в таком многообразии подходящее решение для каждого конкретного случая становится очень непросто, особенно без досконального знания всех тонкостей. В этой статье мы попытаемся осветить основные вопросы, касающиеся выбора твердотельных накопителей, и дадим свои рекомендации, которые позволят при покупке SSD осуществить более-менее осознанный выбор и получить в своё распоряжение продукт, который будет вполне достойным вариантом по сочетанию цены и потребительских качеств.

Проповедуемый нами алгоритм выбора не слишком сложен для понимания. Мы предлагаем не зацикливаться на особенностях аппаратных платформ и контроллеров, используемых в различных моделях SSD. Тем более, что их число давно вышло за разумные пределы, а разница в их потребительских свойствах нередко может быть прослежена лишь специалистами. Вместо этого выбор предпочтительнее строить исходя из действительно важных факторов – используемого интерфейса, типа установленной в том или ином накопителе флеш-памяти и того, какая фирма произвела конечный продукт. Говорить же о контроллерах имеет смысл лишь в отдельных случаях, когда это действительно имеет определяющее значение, и мы такие случаи опишем отдельно.

Форм-факторы и интерфейсы

Первое и самое заметное различие между имеющимися на рынке твердотельными накопителями заключается в том, что они могут иметь различное внешнее исполнение и подключаться в систему по разным интерфейсам, использующим для передачи данных принципиально различные протоколы.

Наиболее распространены SSD, обладающие интерфейсом SATA . Это ровно тот же интерфейс, что применяется в классических механических жёстких дисках. Поэтому большинство SATA SSD и выглядят похожим на мобильные HDD образом: они упаковываются в 2,5-дюймовые корпуса с высотой 7 или 9 мм. Такой SSD можно установить в ноутбук на место старого 2,5-дюймового жёсткого диска, а можно без каких-либо проблем использовать его и в настольном компьютере вместо (или рядом с) 3,5-дюймовым HDD.

Твердотельные накопители, использующие интерфейс SATA, стали своего рода правопреемниками HDD, и это обуславливает их повсеместное распространение и широчайшую совместимость с существующими платформами. Однако современная версия SATA-интерфейса рассчитана на максимальную скорость передачи данных лишь на уровне 6 Гбит/с, которая кажется запредельной для механических жёстких дисков, но не для SSD. Поэтому производительность наиболее мощных моделей SATA SSD определяется не столько их возможностями, сколько пропускной способностью интерфейса. Это не особенно мешает массовым твердотельным накопителям раскрывать свою высокую скорость, но наиболее производительные модели SSD для энтузиастов интерфейс SATA стараются обходить стороной. Тем не менее, именно SATA SSD является самым подходящим вариантом для современной общеупотребительной системы.

Широко используется SATA-интерфейс и в SSD, рассчитанных на компактные мобильные системы. В них дополнительные ограничения накладываются на размер комплектующих, поэтому накопители для таких применений могут выпускаться в специализированном форм-факторе mSATA . Твердотельные накопители данного формата представляют собой небольшую дочернюю карту с напаянными микросхемами и устанавливаются в специальные слоты, имеющиеся в некоторых ноутбуках и неттопах. Преимущество mSATA SSD заключается исключительно в миниатюрности, никаких же иных плюсов у mSATA нет – это точно такие же SATA SSD, что и выпускаемые в 2,5-дюймовых корпусах, но в более компактном исполнении. Поэтому, приобретать такие накопители следует лишь для модернизации систем, в которых есть разъёмы mSATA.



В тех же случаях, когда пропускной способности, предлагаемой SATA-интерфейсом, кажется недостаточно, обратить внимание можно на твердотельные накопители с интерфейсом PCI Express . В зависимости от того, какая версия протокола и сколько линий используется накопителем для передачи данных, пропускная способность этого интерфейса может доходить до значений, впятеро превосходящих возможности SATA. В таких накопителях обычно используются самая производительная начинка, и они существенно обходят по скорости более привычные SATA-решения. Правда, PCIe SSD существенно дороже, поэтому чаще всего они попадают в наиболее высокопроизводительные системы высшей ценовой категории. А поскольку PCIe SSD обычно выпускаются в виде карт расширения, устанавливаемых в слоты PCI Express, подходят они исключительно для полноразмерных настольных систем.



Стоит отметить, что в последнее время становятся популярны накопители c интерфейсом PCI Express, работающие по протоколу NVMe . Это – новый программный протокол работы с устройствами хранения данных, который дополнительно увеличивает быстродействие системы при взаимодействии со скоростной дисковой подсистемой. За счёт сделанных в нём оптимизаций этот протокол действительно обладает лучшей эффективностью, но сегодня к NVMe-решениям нужно относиться с осторожностью: они совместимы лишь с самыми новыми платформами и работоспособны только в новых версиях операционных систем.

В то время как пропускной способности интерфейса SATA становится недостаточно для скоростных моделей SSD, а PCIe-накопители громоздки и требуют для своей установки отдельного полноразмерного слота, на сцену постепенно выходят накопители, выполненные в форм-факторе M.2 . Похоже, что именно M.2 SSD имеют шанс стать следующим общепринятым стандартом, и они будут не менее популярны, чем SATA SSD. Однако нужно иметь в виду, что M.2 – это не ещё один новый интерфейс, а лишь спецификация типоразмера карт и разводки необходимого для них разъёма. Работают же M.2 SSD по вполне привычным интерфейсам SATA либо PCI Express: в зависимости от конкретной реализации накопителя допускается как один, так и другой вариант.



Карты M.2 представляют собой небольшие дочерние платы с напаянными на них элементами. Необходимые для них слоты M.2 сегодня можно найти на большинстве современных материнских плат, а также во многих новых ноутбуках. Учитывая, что M.2 SSD могут работать в том числе и через интерфейс PCI Express, наиболее интересны с практической точки зрения как раз именно такие M.2-накопители. Однако на данный момент ассортимент подобных моделей не слишком велик. Тем не менее, если речь идёт о сборке или модернизации современной высокопроизводительной системы, в частности, игрового десктопа или ноутбука, мы советуем обращать внимание в первую очередь именно на M.2-модели SSD с интерфейсом PCI Express.

Кстати, если ваша настольная система не оборудована разъёмом M.2, а установить такой накопитель всё-таки хочется, сделать это всегда возможно с помощью платы-переходника. Такие решения выпускаются как производителями материнских плат, так и многочисленными мелкими производителями всякой периферии.

Типы флеш-памяти и надёжность накопителей

Второй важный вопрос, с которым в любом случае придётся разобраться при выборе, касается типов флеш-памяти, которые можно встретить в актуальных моделях твердотельных накопителей. Именно флеш-память определяет основные потребительские характеристики SSD: их производительность, надёжность и цену.

Ещё совсем недавно разница между различными типами флеш-памяти состояла лишь в том, сколько бит данных хранится в каждой ячейке NAND, и это подразделяло память на три разновидности: SLC, MLC и TLC. Однако теперь производители осваивают в своих полупроводниковых технологиях новые подходы к компоновке ячеек и к повышению их надёжности, и ситуация стала значительно сложнее. Тем не менее, мы перечислим основные варианты флеш-памяти, которые можно встретить в современных твердотельных накопителях для обычных пользователей.



Начать следует с SLC NAND . Это самый старый и самый простой тип памяти. Он предполагает хранение одного бита данных в каждой ячейке флеш-памяти и благодаря этому имеет высокие скоростные характеристики и заоблачный ресурс перезаписи. Проблема лишь в том, что хранение по одному биту информации в каждой ячейке активно расходует транзисторный бюджет, и флеш-память такого типа получается очень дорогой. Поэтому SSD на базе такой памяти уже давно не выпускаются, и на рынке их попросту нет.

Разумной альтернативой SLС-памяти с более высокой плотностью хранения данных в полупроводниковых NAND-кристаллах и более низкой ценой является MLC NAND . В такой памяти в каждой ячейке хранится уже по два бита информации. Скорость работы логической структуры MLC-памяти остаётся на достаточно хорошем уровне, но выносливость снижается примерно до трёх тысяч циклов перезаписи. Тем не менее, MLC NAND используется сегодня в подавляющем большинстве высокопроизводительных твердотельных накопителей, а уровень её надёжности вполне достаточен для того, чтобы производители SSD не только давали на свои продукты пятилетнюю или даже десятилетнюю гарантию, но и обещали возможность перезаписи полной ёмкости накопителя несколько сотен раз.

Для тех же применений, где интенсивность операций записи очень высока, например, для серверов, производители SSD собирают решения на базе специальной eMLC NAND . С точки зрения принципов работы это – полный аналог MLC NAND, но с повышенной устойчивостью к постоянным перезаписям. Такая память изготавливается из самых лучших, отборных полупроводниковых кристаллов и может без проблем переносить примерно втрое большую нагрузку, чем ординарная MLC-память.

В то же время стремление к снижению цен на свою массовую продукцию заставляет производителей переходить на более дешёвую по сравнению с MLC NAND память. В бюджетных накопителях последних поколений нередко встречается TLC NAND – флеш-память, в каждой ячейке которой хранится по три бита данных. Эта память примерно в полтора раза медленнее, чем MLC NAND, а её выносливость такова, что перезаписать в ней информацию до деградации полупроводниковой структуры удаётся около тысячи раз.

Тем не менее, даже такую хлипкую TLC NAND в сегодняшних накопителях можно встретить достаточно часто. Число моделей SSD на её основе уже перевалило далеко за десяток. Секрет жизнеспособности таких решений заключается в том, что в них производители добавляют небольшой внутренний кеш, основанный на скоростной и высоконадёжной SLC NAND. Именно таким образом решается сразу обе проблемы – как с производительностью, так и с надёжностью. В результате, SSD на базе TLC NAND получают скорости, достаточные для насыщения SATA-интерфейса, а их выносливость позволяет производителям давать на конечные продукты трёхлетнюю гарантию.



В погоне за снижением себестоимости продукции производители стремятся к уплотнению данных внутри ячеек флеш-памяти. Именно этим был обусловлен переход на MLC NAND и начавшееся теперь распространение в накопителях TLC-памяти. Следуя этой тенденции, в скором времени мы могли бы столкнуться и с SSD на базе QLC NAND, в которой каждая ячейка хранит по четыре бита данных, однако какова бы была надёжность и скорость работы такого решения, остаётся только догадываться. К счастью, индустрия нашла другой путь повышения плотности хранения данных в полупроводниковых кристаллах, а именно – их перевод на трёхмерную компоновку.

В то время как в классической NAND-памяти ячейки расположены исключительно планарно, то есть в виде плоского массива, в 3D NAND в полупроводниковой структуре введено третье измерение, и ячейки располагаются не только по осям X и Y, но и в несколько ярусов друг над другом. Этот подход позволяет решить главную проблему – плотность хранения информации в такой структуре можно наращивать не увеличением нагрузки на имеющиеся ячейки или их миниатюризацией, а простым добавлением дополнительных слоёв. Успешно решается в 3D NAND и вопрос выносливости флеш-памяти. Трёхмерная компоновка позволяет применять производственные технологии с увеличенными нормами, которые с одной стороны дают более устойчивую полупроводниковую структуру, а с другой – устраняют взаимное влияние ячеек друг на друга. В результате, ресурс трёхмерной памяти по сравнению с планарной удаётся улучшить примерно на порядок.



Иными словами, трёхмерная структура 3D NAND готова совершить настоящую революцию. Проблема лишь в том, что изготавливать такую память несколько сложнее, чем обычную, поэтому старт её производства значительно растянулся по времени. В итоге, на данный момент налаженным массовым выпуском 3D NAND может похвастать лишь компания Samsung. Остальные производители NAND пока лишь готовятся к запуску серийного производства трёхмерной памяти и смогут предложить коммерческие решения только в следующем году.

Если же говорить о трёхмерной памяти Samsung, то на сегодняшний день она использует 32-слойный дизайн и продвигается под собственным маркетинговым именем V-NAND. По типу организации ячеек в такой памяти она подразделяется на MLC V-NAND и TLC V-NAND – и то, и другое – это трёхмерная 3D NAND, но в первом случае каждая отдельная ячейка хранит по два бита данных, а во втором – по три. Хотя принцип действия в обоих случаях схож с обычной MLC и TLC NAND, за счёт использования зрелых техпроцессов её выносливость выше, а значит, SSD на базе MLC V-NAND и TLC V-NAND несколько лучше по надёжности, чем SSD с обычной MLC и TLC NAND.

Впрочем, говоря о надёжности твердотельных накопителей, необходимо иметь в виду, что от ресурса применяемой в них флеш-памяти она зависит лишь опосредовано. Как показывает практика, современные потребительские SSD, собранные на качественной NAND-памяти любого типа, в реальности способны перенести запись сотен терабайт информации. И это с лихвой покрывает потребности большинства пользователей персональных компьютеров. Выход же накопителя из строя при исчерпании им ресурса памяти – это скорее из ряда вон выходящее событие, которое может быть связано лишь с тем, что SSD используется при слишком интенсивной нагрузке, для которой он на самом деле не предназначался изначально. В большинстве случаев поломки SSD происходят по совершенно другим причинам, например, от перебоев питания или ошибок в их микропрограмме.

Поэтому вместе с типом флеш-памяти очень важно обращать внимание и на то, какая компания изготовила конкретный накопитель. Крупнейшие производители имеют в своём распоряжении более мощные инженерные ресурсы и лучше заботятся о своей репутации, чем небольшие фирмы, вынужденные конкурировать с грандами, используя в первую очередь ценовой аргумент. Вследствие этого SSD крупных производителей в целом более надёжны: в них используются заведомо качественные компоненты, а доскональная отладка микропрограммы является одним из важнейших приоритетов. Это подтверждаются и практикой. Частота обращений по гарантии (по общедоступной статистике одного из европейских дистрибуторов) меньше у тех SSD, которые произведены более крупными компаниями, о которых мы подробнее поговорим в следующем разделе.

Производители SSD, о которых следует знать

Рынок потребительских SSD очень молод, и на нём ещё не успела произойти консолидация. Поэтому число производителей твердотельных накопителей очень велико – как минимум их не меньше сотни. Но большинство из них – это мелкие компании, которые не имеют ни собственных инженерных команд, ни полупроводникового производства, а фактически занимаются лишь сборкой своих решений из закупаемых на стороне готовых компонентов и их маркетинговой поддержкой. Естественно, SSD, выпущенные такими «сборщиками», уступают продукции настоящих производителей, которые инвестируют в разработку и производство огромные средства. Именно поэтому при рациональном подходе к выбору твердотельных накопителей обращать внимание стоит лишь на решения, выпускаемые лидерами рынка.

В числе таких «столпов», на которых держится весь рынок твердотельных накопителей, можно назвать лишь несколько имён. И в первую очередь это – Samsung , которая на этот момент владеет весьма внушительной 44-процентной рыночной долей. Иными словами, почти каждый второй проданный SSD сделан именно Samsung. И такие успехи совсем не случайны. Компания не только самостоятельно делает флеш-память для своих SSD, но и обходится вообще без какого-либо стороннего участия в проектировании и производстве. В её твердотельных накопителях используются аппаратные платформы, от начала и до конца сконструированные собственными инженерами и производимые на собственных мощностях. В результате, передовые накопители Samsung нередко отличаются от конкурирующих продуктов своей технологической продвинутостью – в них можно встретить такие прогрессивные решения, которые в продукции других фирм появляются существенно позже. Например, накопители, основанные на 3D NAND, в настоящее время присутствуют исключительно в ассортименте компании Samsung. И именно поэтому на SSD этой компании следует обратить внимание энтузиастам, которым импонирует техническая новизна и высокая производительность.

Второй по величине производитель SSD потребительского уровня – Kingston , владеющий примерно 10-процентной рыночной долей. В отличие от Samsung эта компания не занимается самостоятельным выпуском флеш-памяти и не ведёт разработок контроллеров, а опирается на предложения сторонних производителей NAND-памяти и решения независимых инженерных команд. Однако именно это позволяет Kingston конкурировать с гигантами вроде Samsung: умело подбирая партнёров в каждом конкретном случае, Kingston предлагает весьма разностороннюю линейку продукции, хорошо отвечающую потребностям разных групп пользователей.

Также мы бы посоветовали обращать внимание на те твердотельные накопители, которые выпускаются компаниями SanDisk и Micron, использующей торговую марку Crucial . Обе эти фирмы имеют собственные мощности по выпуску флеш-памяти, что позволяет им предлагать высококачественные и технологичные SSD с отличным сочетанием цены, надёжности и быстродействия. Немаловажно и то, что при создании своих продуктов эти производители опираются на сотрудничество с компанией Marvell – одним из лучших и крупнейших разработчиков контроллеров. Такой подход позволяет SanDisk и Micron стабильно добиваться достаточно высокой популярности их продукции – их доля на рынке SSD достигает 9 и 5 процентов соответственно.

В завершение рассказа об основных игроках рынка твердотельных накопителей упомянуть следует и о компании Intel. Но, к сожалению, не в самом положительном ключе. Да, она тоже самостоятельно производит флеш-память и имеет в своём распоряжении отличную инженерную команду, способную проектировать весьма интересные SSD. Однако Intel сосредоточена в первую очередь на разработках твердотельных накопителей для серверов, которые рассчитаны на интенсивные нагрузки, имеют достаточно высокую цену и потому малоинтересны для обычных пользователей. Её же клиентские решения основываются на совсем старых аппаратных платформах, закупаемых на стороне, и заметно проигрывают в своих потребительских качествах предложениям конкурентов, о которых мы говорили выше. Иными словами, использовать в современных персональных компьютерах твердотельные накопители компании Intel мы не советуем. Исключение для них можно делать лишь в одном случае – если речь идёт о высоконадёжных накопителях с eMLC-памятью, которые микропроцессорному гиганту удаются на отлично.

Быстродействие и цены

Если вы внимательно ознакомились с первой частью нашего материала, то осмысленный выбор твердотельного накопителя кажется очень простым. Совершенно очевидно, что выбирать следует из основанных на V-NAND или MLC NAND моделей SSD, предлагаемых лучшими производителями – лидерами рынка, то есть Crucial, Kingston, Samsung или SanDisk. Однако даже если сузить круг поиска до предложений только этих компаний, то окажется, что их всё равно очень много.

Поэтому к критериям поиска придётся привлечь дополнительные параметры – производительность и цену. На сегодняшнем рынке SSD произошла чёткая сегментация: предлагаемые продукты относятся к нижнему, среднему или верхнему уровню и от этого прямо зависит их цена, производительность, а также и условия гарантийного обслуживания. Наиболее дорогие твердотельные накопители основываются на самых производительных аппаратных платформах и используют самую качественную и быструю флеш-память, более же дешёвые – базируются на урезанных платформах и NAND-памяти попроще. Накопители же среднего уровня характеризуются тем, что в них производители пытаются соблюсти баланс между производительностью и ценой.

В результате, продающиеся в магазинах бюджетные накопители предлагают удельную цену на уровне $0,3-0,35 за каждый гигабайт. Модели среднего уровня подороже – их стоимость составляет $0,4-0,5 за каждый гигабайт объёма. Удельные же цены флагманских SSD вполне могут доходить до $0,8-1,0 за гигабайт. В чём же разница?

Решения верхней ценовой категории, которые в первую очередь ориентированы на аудиторию энтузиастов, это – высокопроизводительные SSD, использующие для своего включения в систему шину PCI Express, которая не ограничивает максимальную пропускную способность при передаче данных. Такие накопители могут быть выполнены в виде M.2 или PCIe-карт и обеспечивают скорости, в разы превышающие быстродействие любых SATA-накопителей. При этом в их основе используются специализированные контроллеры Samsung, Intel или Marvell и самая качественная и быстродействующая память типов MLC NAND или MLC V-NAND.

В среднем ценовом сегменте играют SATA-накопители, подключаемые по SATA-интерфейсу, однако способные при этом задействовать (почти) всю его пропускную способность. Такие SSD могут использовать разные контроллеры разработки Samsung или Marvell и различную качественную MLC либо V-NAND память. Однако в целом их производительность примерно одинакова, поскольку больше зависит от интерфейса, чем от мощности начинки накопителя. Выделяются такие SSD на фоне более дешёвых решений не только производительностью, но и расширенными условиями гарантии, срок которой устанавливается в пять или даже десять лет.

Бюджетные накопители – самая многочисленная группа, в которой находят место совершенно разношёрстные решения. Однако находятся у них и общие черты. Так, контроллеры, которые применяются в недорогих SSD, обычно имеют урезанный уровень параллелизма. Кроме того, чаще всего это процессоры, созданные небольшими тайваньскими инженерными командами вроде Phison, Silicon Motion или JMicron, а не командами разработчиков с мировым именем. По своей производительности бюджетные накопители до решений более высокого класса, естественно, не дотягивают, что бывает особенно заметно при случайных операциях. Кроме того, попадающая в накопители нижнего ценового диапазона флеш-память тоже к самому высокому уровню, естественно, не относится. Обычно здесь встречается либо дешёвая MLC NAND, выпущенная по «тонким» производственным нормам, или вообще TLC NAND. Вследствие этого сроки гарантии на такие SSD сокращены до трёх лет, существенно ниже бывает и декларируемый ресурс перезаписи. Высокопроизводительные SSD

Samsung 950 PRO . Вполне естественно, что лучшие SSD потребительского уровня стоит искать в ассортименте компании, которая занимает на рынке доминирующее положение. Так что если вы хотите получить в своё распоряжение накопитель премиального класса, который заведомо превосходит любые другие SSD по скорости, то можете смело приобретать новейший Samsung 950 PRO. В его основе лежит собственная аппаратная платформа Samsung, в которой задействуется передовая MLC V-NAND второго поколения. Она обеспечивает не только высокую производительность, но и хорошую надёжность. Но следует иметь в виду, что Samsung 950 PRO включается в систему по шине PCI Express 3.0 x4 и выполнен в виде карты форм-фактора M.2. И есть ещё одна тонкость. Этот накопитель работает по протоколу NVMe, то есть совместим лишь с новейшими платформами и операционными системами.



Kingston HyperX Predator SSD . Если же вы хотите получить максимально беспроблемное решение, которое заведомо совместимо не только с самыми новыми, но и со зрелыми системами, то выбор стоит останавливать на Kingston HyperX Predator SSD. Этот накопитель немного медленнее Samsung 950 PRO и использует шину PCI Express 2.0 x4, но зато его всегда и без каких-либо проблем можно сделать загрузочным накопителем в абсолютно любой системе. При этом обеспечиваемые им скорости в любом случае в разы выше, чем выдают SATA SSD. И ещё одна сильная сторона Kingston HyperX Predator SSD заключается в том, что он доступен в двух вариантах: в виде карт форм-фактора M.2, либо в виде PCIe-плат, устанавливаемых в привычный слот. Правда, есть у HyperX Predator и прискорбные недостатки. На его потребительских свойствах сказывается тот факт, что производитель закупает базовые компоненты на стороне. В основе HyperX Predator SSD лежит контроллер разработки Marvell и флеш-память Toshiba. В результате, не имея полного контроля над начинкой своего решения, Kingston вынуждена давать на свой премиальный твердотельный накопитель гарантию, сокращённую до трёх лет.




Тестирование и обзор Kingston HyperX Predator SSD .

Твердотельные накопители среднего уровня

Samsung 850 EVO . Основанный на собственной самсунговской аппаратной платформе, которая включает новаторскую флеш-память типа TLC V-NAND, накопитель Samsung 850 EVO предлагает отличное сочетание потребительских характеристик. При этом его надёжность не вызывает никаких нареканий, а технология SLC-кеширования TurboWrite позволяет полностью задействовать пропускную способность SATA-интерфейса. Особенно привлекательными нам представляются варианты Samsung 850 EVO с ёмкостью от 500 Гбайт и выше, которые обладают SLC-кешем большего размера. Кстати, в этой линейке есть и уникальный SSD с объёмом 2 Тбайт, аналогов которого вообще не существует. Ко всему перечисленному следует добавить, что на Samsung 850 EVO распространяется пятилетняя гарантия, причём владельцы накопителей данного производителя всегда могут обратиться в любой из раскиданных по стране многочисленных сервис-центров этой компании.



SanDisk Extreme Pro . Компания SanDisk сама производит флеш-память для своих накопителей, но контролеры закупает на стороне. Так, Extreme Pro базируется на контроллере разработки Marvell, однако в нём можно найти немало ноу-хау от самой SanDisk. Самое интересное добавление – SLC-кеш nCahce 2.0, который в Extreme Pro реализован внутри MLC NAND. В результате, производительность SATA-накопителя весьма впечатляет, а кроме того, мало кого оставят равнодушными условия гарантии, срок которой установлен в 10 лет. Иными словами, SanDisk Extreme Pro – очень интересный и актуальный вариант для систем среднего уровня.




Тестирование и обзор SanDisk Extreme Pro .

Crucial MX200 . Есть очень неплохой SATA SSD среднего уровня и ассортименте Micron. Crucial MX200 использует произведённую этой фирмой MLC-память и подобно SanDisk Extreme Pro основывается на контроллере Marvell. Однако модель MX200 дополнительно усилена технологией динамического SLC-кеширования Dynamic Write Acceleration, которая поднимает производительность SSD выше среднего уровня. Правда, используется она лишь в моделях с ёмкостью 128 и 256 Гбайт, так что в первую очередь интерес представляют именно они. Также несколько хуже у Crucial MX200 и условия гарантии – её срок установлен лишь в три года, но в качестве компенсации Micron продаёт свои SSD немного дешевле конкурентов.




Бюджетные модели

Kingston HyperX Savage SSD . Компания Kingston предлагает бюджетный SSD, основанный на полноценном восьмиканальном контроллере, чем он и подкупает. Правда, в HyperX Savage используется разработка Phison, а не Marvell, но зато флеш-память – нормальная MLC NAND, которую Kingston закупает у Toshiba. В итоге, уровень производительности, обеспечиваемый HyperX Savage, немного ниже среднего, а гарантия на него – трёхлетняя, но среди бюджетных предложений этот накопитель смотрится достаточно уверенно. Кроме того, HyperX Savage эффектно выглядит и его будет приятно установить в корпус с окном.




Тестирование и обзор Kingston HyperX Savage SSD .

Crucial BX100 . Этот накопитель попроще, чем Kingston HyperX Savage, и в его основе лежит урезанный четырёхканальный контроллер Silicon Motion, но несмотря на это производительность Crucial BX100 совсем неплоха. Кроме того, Micron использует в этом SSD свою собственную MLC NAND, что в итоге и делает данную модель весьма интересным бюджетным предложением, предлагаемым именитым производителем и не вызывающим претензий пользователей к надёжности.



Флэш-память NAND использует логический элемент NOT AND, и, как и многие другие типы памяти, хранит данные в большом массиве клеток, где каждая ячейка содержит один или несколько битов данных.

Любой вид памяти может подвергаться влиянию внутренних и внешних факторов, таких как износ, физическое повреждение, ошибки аппаратного обеспечения и прочие. В таких случаях мы рискуем расстаться со своими данными на совсем. Что же делать в таких ситуациях? Не стоит волноваться, поскольку существуют программы восстановления данных , которые восстанавливают данные легко и быстро, без необходимости покупать дополнительное оборудование или, в крайнем случае, начинать работу над утерянными документами заново. Рассмотрим NAND флэш-память детальнее.

Как правило, массив NAND делится на множество блоков. Каждый байт в одном из этих блоков может быть индивидуально написан и запрограммирован, но один блок представляет наименьшую стираемую часть массива. В таких блоках каждый бит имеет двоичное значение 1. Например, монолитное устройство NAND флэш-памяти объемом 2 Гб обычно состоит из блоков по 2048 Б (128 КБ) и 64 на каждый блок. Каждая страница вмещает 2112 Б, и состоит из 2048 байт данных и дополнительной зоны в 64 байта. Запасные области обычно используется для ECC, информации об износе ячеек и другие накладные функции программного обеспечения, хотя физически он не отличается от остальной части страницы. NAND устройства предлагаются с 8-битным или 16-битным интерфейсом. Узел данных подключен к NAND памяти через двунаправленную шину данных 8 или 16 бит. В 16-битном режиме команды и адреса используют 8 бит, остальные 8 бит приходятся на использование во время циклов передачи данных.

Типы флэш-памяти NAND

Флэш-память NAND, как мы уже отмечали, бывает двух типов: одноуровневая (SLC) и многоуровневая (MLC). Одноуровневая флэш-память – SLC NAND (single level cell) хорошо подойдет для приложений, которые требуют высокую и среднюю плотность. Это простейшая в использовании и удобная технология. Как описано выше, SLC NAND хранит один бит данных в каждой ячейке памяти. SLC NAND предлагает относительно высокую скорость чтения и записи, хорошую производительность и алгоритмы коррекции простых ошибок. SLC NAND может быть дороже других технологий NAND в расчете на один бит. Если приложению требуется высокая скорость чтения, например, высокопроизводительная медиа карта, некоторые гибридные диски, твердотельные устройства (SSD) или другие встроенные приложения — SLC NAND может стать единственным подходящим выбором.

Многоуровневая флэш-память – MLC NAND (multilevel cell) предназначена для приложений более высокой плотности и с медленным циклом.

В отличие от SLC NAND многоуровневые ячейки MLC NAND хранят два или больше бит на одну ячейку памяти. Чтобы определить место для каждого бита, применяется напряжение и ток. В устройствах SLC требуется только один уровень напряжения. Если ток обнаружен, то значение бита равно 1; если ток не обнаружен, то бит обозначается как 0. Для устройства MLC для определения значений битов используются три разных уровня напряжения.

Как правило, MLC NAND предлагает объем в два раза больше, чем SLC NAND для одного устройства и стоит также дешевле. Поскольку SLC NAND в три раза быстрее, чем MLC NAND и предлагает производительность выше, более чем в 10 раз; но для многих приложений, MLC NAND предлагает правильное сочетание цены и производительности. В самом деле, MLC NAND представляет почти 80% от всех поставок флэш-памяти NAND. И флэш-память MLC NAND доминирует по выбору потребителя по классу SSD потому, как их производительность превосходит магнитные жесткие диски.

Срок службы твердотельного накопителя зависит от количества байтов, которые были записаны в NAND флэш-память. Большинство устройств на базе MLC имеют гарантию сроком в один-три года. Однако важно понимать, как именно будет использоваться устройство, поскольку SSD на базе MLC могут прослужить меньше если предполагается множественная перезапись на диск. С другой стороны решения на базе SLC прослужат дольше предполагаемых трех лет даже при тяжелых PE циклах.

История NAND-флэш

Флэш-память NAND – это энергонезависимый твердотельный накопитель, что внес значительные изменения в индустрии хранения данных, возраст которой на сегодняшний момент составляет уже 26 лет. Флэш-память была изобретена доктором Фуджио Масуока (Fujio Masuoka) во время работы в компании Toshiba приблизительно в 1980 году. По словам Toshiba имя «флэш» было предложено коллегой доктора Масуока, г-ном Шо Цзи Аризуми (Sho-ji Ariizumi), в виду того, что процесс стирания содержимого памяти напомнил ему вспышку камеры.

Копания Toshiba поставила NAND флэш-память на коммерческую ногу в 1987 году; многое изменилось с тех пор. Рынок NAND флэш-памяти вырос быстро при продажах, в восемь раз превышающих объемы продаж памяти DRAM (Dynamic random access memory — динамическая память с произвольным доступом). NAND память стала высокопрочным устройством хранения данных и выбором многих пользователей. Такая память сегодня используется в различных картах памяти и USB-накопителях, облачных хранилищах встречается у многих пользователей, как в промышленности и предпринимательстве, так и в домашних устройствах. Устройства Apple’s iPhone, iPod и iPad, а также телефоны и планшеты на базе Android также широко используют NAND флэш-память. С тех времен это нововведение пробилось в новую эпоху, в которой потребители могут всегда воспользоваться своими файлами: видео, музыкой, книгами и документами, где бы Вы ни находились.

Высококачественная NAND запрограммирована на чтение информации небольшими блоками, или страницами, в то время, как флэш-память типа NOR считывает и записывает данные по 1 байту за раз. NOR флэш-память более предпочтительна для устройств, которые хранят и запускают коды, обычно небольших объемов.

Введение твердотельной NAND флэш-памяти и устройств хранения данных в дополнение к обычным магнитным жестким дискам дало предприятиям новые возможности для запуска их сервера и хранения ключевых бизнес-приложений. Поскольку такая память не имеет движущихся частей, NAND флэш может обрабатывать и перемещать данные из одного места в другое значительно быстрее благодаря отличной скорости чтения и записи. Приложения, использующиеся в финансовых услугах, розничной торговле и облачных веб-сервисах, часто эксплуатируют серверы, оснащенные NAND флэш-памятью.

Флэш-память хранит информацию в массиве, состоящем из ячеек памяти и транзисторов с плавающим затвором. В устройствах с ячейками одного уровня (SLC), каждая ячейка хранит только один бит информации. Некоторые более новые типы флэш-памяти, известные как устройства многоуровневых ячеек (MLC), могут хранить больше, чем один бит на ячейку, выбирая между несколькими уровнями электрического заряда с целью применить к транзистору с плавающим затвором и его ячейкам.

Ключевые факты, касающиеся NAND Flash

Эволюция типов флэш-памяти впечатляет. StorageNewsletter.com, уважаемый и общепризнанный источник ежедневных электронных новостей для промышленности, следит за развитием NAND флэш-памяти довольно продолжительное время и имеет целый архив данных по существованию этой технологии.

Флэш-чипы: увеличение объемов и более низкая цена флэш-памяти и твердотельных накопителей напрямую зависят от процесса производства микросхем флэш-памяти NAND. SanDisk и Toshiba теперь предлагают линию MLC на 128 ГБ и чип с ячейкой в 3 бита каждая. Среди крупных мировых производителей флэш-памяти находятся такие компании, как: Intel, Samsung, Seagate, Nvidia, LSI, Micron и Western Digital.

Флэш-ключи (или флэшки): первые USB-флэш были разработаны в конце 1990-х годов компанией M-Systems, которая позже была приобретена компанией SanDisk. В 2001 году в США компания IBM начала производить версию памяти объемом в 8 Мб, называемую «память ключей». Сейчас объем такой памяти достигает 128 ГБ и цены были значительно снижены.

Та же компания M-Systems стала первым производителем SSD в 1995 году. С 1999, SN.com зафиксировали 590 разных моделей, запущенных в производство 97 компаниями. Среди остальных, BiTMICRO Networks в 1999 выпустили модель E-Disk SNX35 размером в 3.5 дюйма и объемами от 128MB до 10GB, временем доступа в 500 мс и со скоростью чтения и записи в 4MБ/с с помощью интерфейса SCSI-2. В следующий год M-Systems произвели FFD SCSI объемом в 3 ГБ, 2,5 дюймовый SSD с максимальной скоростью чтения в 4 МБ/с и записи в 3 МБ/с.

Сегодня же можно получить память объемом 16 ТБ (PCIe SSD от компании OCZ) со скоростью чтения до 4 ГБ/с и записи до 3,8 ГБ/с. Компания OCZ также объявила в 2012 году о максимально малом времени записи и чтения информации: 0.04 мс для чтения и 0.02 мс для операций записи.

Мы часто можем попасть в ситуацию, когда данные удаляются или повреждаются вследствие различных ошибок, как в системе, так и ошибок самого человека. О том, как восстановить данные с карты памяти можно узнать .

Критерии выбора устройства с NAND-флэш

Итак, когда дело доходит до выбора устройства (на примере SSD) с технологией NAND-флэш необходимо учитывать несколько критериев выбора:

Убедитесь в том, что SSD устройство, операционная и файловая система поддерживает TRIM, особенно, если карта использует контроллер жёсткого диска, что усложняет процесс сбора «мусора», ненужных данных:

— узнайте о том, поддерживает ли Ваша ОС трим можно узнать в любом источнике информации; — существуют приложения, которые способствуют добавлению трим-технологии для Вашей ОС, если такова не поддерживается. Но прежде узнайте, не повредит ли это общей производительности устройства. SSD с памятью NAND станет отличным выбором, когда нужна высокая производительность, отсутствие шума, устойчивость к внешним факторам влияния или малое потребление энергии: — непоследовательное считывание даст возможность увеличить производительность по сравнению с HDD; — узнайте о максимально возможной производительности устройства, чтобы не превысить пределы; Для лучшего выполнения операций и круглосуточного их проведения лучше выбирать SLC, чем MLC: — SSD на базе NAND отлично ускоряет работу серверов, но помните, что для этого также понадобиться запасное место для «мусора» и/или трим. — Система RAID с SSD даст высокие показатели производительности и устойчивости, но используйте специально разработанные для SSD рэйд-контроллеры, иначе накопиться столько «мусора», что не справиться даже трим или система сбора. Устройства SSD с большими показателями выносливости, конечно же, прослужат дольше: — Например, выбирайте устройство объемом в 100 ГБ вместо 128 ГБ, 200 ГБ вместо 256 ГБ и так далее. Тогда Вы будете точно знать, что 28 или 56 и так далее гигабайт памяти это, возможно, зарезервированное место для расчета износа, реорганизации файлов и дефектных ячеек памяти. Для использования в промышленности, на производстве или в офисах, лучше выбирать устройства бизнес-класса, например, PCI Express (PCIe) SSD устройство:

Карты PCIe со специально настроенным контроллером SSD может дать очень высокую производительность ввода-вывода данных и хорошую выносливость.