Регенерация динамической памяти. Типы оперативной памяти

    регенерация памяти - Регулярный циклический опрос ячеек памяти с регенерацией хранимой в них информации. Такая процедура обращения к памяти необходима в системах с запоминающими ячейками в виде конденсаторов, где время хранения данных ограничено. [Л.М. Невдяев.… …

    - (запоминающиеустройства) в вычислит. технике (см. Электронная вычислительная машина)устройства для записи, хранения и воспроизведения информации. В качественосителя информации может выступать физ. сигнал, распространяющийся в среде … Физическая энциклопедия

    Запрос «ОЗУ» перенаправляется сюда. Cм. также другие значения. Простейшая схема взаимодействия оперативной памяти с ЦП Оперативная память (также оперативное запоминающее устройство, ОЗУ) в информатике память, часть системы памяти ЭВМ, в которую … Википедия

    адаптивная регенерация - Процедура обновления информации, хранимой в полупроводниковых ячейках памяти, при которой все запросы на регенерацию ставятся в очередь и обслуживаются в фоновом режиме (в паузах между остальными запросами). Если же число накопившихся запросов… … Справочник технического переводчика

    - (МПИ) стандарт, определяющий набор контактов и процедуры обмена по 16 разрядной шине с совмещением (мультиплексированием) адреса и данных. Стандарт не определяет физической реализации интерфейса. Содержание 1 Принцип работы 2 Реализации … Википедия

    Типы DRAM памяти FPM RAM EDO RAM Burst EDO RAM SDRAM DDR SDRAM DDR2 SDRAM DDR3 SDRAM DDR4 SDRAM Rambus RAM QDR SDRAM VRAM WRAM SGRAM GDDR2 GDDR3 GDDR4 GDDR5 … Википедия

    Типы DRAM памяти FPM RAM EDO RAM Burst EDO RAM DDR SDRAM DDR2 SDRAM DDR3 SDRAM QDR SDRAM WRAM SGRAM GDDR3 GDDR5 DRAM (Dynamic Random Access Memory) один из видов компьютерной памяти с произвольным доступом (RAM), наиболее широко используемый в… … Википедия

    Запрос «Повелители времени» перенаправляет сюда. О французском фантастическом мультфильме см. Властелины времени (мультфильм) Галлифрей … Википедия

    Спираль, также известная как Символ Большинство персонажей сериала «Герои» обладает сверхчеловеческими способностями. Способности связаны с генотипом и передаются по наследству. Статья является переводом интерпретацией статьи на английском.… … Википедия

    Тип Промышленная микроЭВМ Выпущен? Выпускался по … Википедия

    НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия

Здравствуйте, уважаемые читатели блога Help начинающему пользователю компьютера. Сегодня мы опишем физическую и логическую организацию динамической памяти DRAM. Физически память DRAM (Dynamic RAM - DRAM) состоит из ячеек. Совокупность ячеек DRAM-памяти образуют матрицу, в которую входит определённое количество строк и столбцов. Матрицу ячеек еще называют страницей. Совокупность страниц называют банком.

Для образования одной ячейки используется электронная схема, в которую входит один транзистор и один конденсатор (это простейшая схема). Конденсатор в течении некоторого промежутка способен сохранять электрический заряд (заряды в конденсаторах стекают, поэтому память получила своё название динамическая). Присутствие или отсутствие заряда на конденсаторе дает бит информации (1 или 0) – единицу информации. Таким образом, чтобы записать в ячейку бит информации в виде логической единицы, необходимо зарядить конденсатор. Чтобы получить логический нуль конденсатор разряжают.

При считывании данных каждый конденсатор разряжается, поэтому его необходимо зарядить до предыдущего значения. Кроме того, конденсаторы сохраняют заряд только на протяжении определенного промежутка времени и время от времени нуждаются в подзарядке (чтобы не терялись данные). Для этого используется регенерация электрического заряда конденсатора . Процесс регенерации сочетается с процессом считывания информации из ячеек DRAM. Но когда в промежутке длительного времени обращение к ячейке не происходит (конденсаторы разряжаются), контроллер памяти (обычно встраиваемый в набор микро­схем системной платы, однако он может быть встроен и в процессор) периодически обращается ко всем ячейкам в микросхемах па­мяти и восстанавливает данные. Процесс регенерации замедляет роботу системы, поскольку при регенерации памяти обмен данными с памятью невозможен.

По логике организации DRAM-память может быть асинхронной (обмен данными, подача адресов выполняются в произвольные моменты времени) и синхронной (имеется внешний синхронный сигнал, к импульсам которого привязаны моменты подачи адресов и обмена данными).

Динамическая оперативная память на данный момент наиболее широко используется в современных ПК.

Причинами такой популярности стали:

  • Компактность DRAM. Ячейки динамической памяти очень плотно упакованы, что позволяет организовать память большой емкости.
  • Дешевизна модулей памяти. Использованием схемы с одним конденсатором и транзистором в качестве ячейки памяти дешевле по сравнению с статической памятью (где в качестве ячейки памяти выступает триггер, который включает в себя несколько транзисторов).

Стоит отметить, что динамическая память имеет ряд минусов:

Динамическая память по сравнению с памятью статической работает медленнее (связано с затратой времени на зарядку и разрядку конденсаторов). К минусам относится необходимость регенерации заряда конденсатора (цикл регенера­ции по длительности занимает несколько тактов центрального процессора), поскольку при регенерации периодически приостанавливаются все операции с памятью.

На протяжении долгого времени разработчиками создавались различные типы памяти. Они обладали разными характеристиками, в них были использованы разные технические решения. Основной движущей силой развития памяти было развитие ЭВМ и центральных процессоров. Постоянно требовалось увеличение быстродействия и объёма оперативной памяти.

Страничная память

Страничная память (англ. pagemodeDRAM,PMDRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Этот тип DRAM осуществляет чтение каждой ячейки памяти за 5 тактов. Каждая ячейка в обычной памяти читается/записывается независимо от другой. Память такого типа выпускалась в начале 90-х годов, но с ростом производительности центральных процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.

Быстрая страничная память

Быстрая страничная память (англ. fastpagemodeDRAM,FPMDRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела. Отличие FPM от просто PM DRAM состоит в том, что введена укороченная схема считывания данных после первой ячейки, то есть первая ячейка будет считыватся за 5 тактов, а остальные - за 4.

Данный тип памяти в основном применялся для компьютеров с процессорами Intel486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 МГц и 33 МГц с временем полного доступа 70 нс и 60 нс и с временем рабочего цикла 40 нс и 35 нс соотвественно.

Память с усовершенствованным выходом

Но с появлением процессоров IntelPentiumIIпамятьFPMDRAMоказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ.extendeddataoutDRAM,EDODRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорамиIntelPentiumи выше. Её производительность оказалась на 10-15 % выше по сравнению с памятью типаFPMDRAM.

Схема считывание данных была еще укорочена, при этом достижимой стало считывание последующих за первой ячеек за 3 такта системной шины.

Её рабочая частота была 40 МГц и 50 МГц, соответственно, время полного доступа - 60 нс и 50 нс, а время рабочего цикла - 25 нс и 20 нс. Эта память содержит регистр-защелку (datalatch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.

Синхронная DRAM

В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDODRAMстала заметно падать. Ей на смену пришла синхронная память (англ.synchronousDRAM,SDRAM).

SDRAM синхронизирована с системным таймером, управляющим центральным процессором. Системные "часы" управляют работой SDRAM, уменьшая задержки в процессе ожидания и существенно сокращая время, требуемое на поиск данных в памяти.

Новыми особенностями этого типа памяти являлись также и использования конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше). Недостатками данного типа памяти явилась в то время его высокая цена, а также его несовместимость со многими чипсетами и материнскими платами в силу своих новых конструктивных особенностей. Рабочие частоты этого типа памяти могли равняться 66 МГц, 100 МГц или 133 МГц, время полного доступа - 40 нс и 30 нс, а время рабочего цикла - 10 нс и 7.5 нс.

Другое усовершенствование. Количество матриц (банков) памяти в SDRAMувеличено с одного до двух (а, в некоторых моделях, и четырех). Это позволяет обращаться к ячейкам одного банка параллельно с перезарядкой внутренних цепей другого, что вдвое увеличивает предельно допустимую тактовую частоту. Помимо этого появилась возможность одновременного открытия двух (четырех) страниц памяти, причем открытие одной страницы (т.е. передача номера строки) может происходить во время считывания информации с другой, что позволяет обращаться по новому адресу столбца ячейки памяти на каждом тактовом цикле.

В отличие от FPM-DRAM\EDO-DRAM\BEDO, выполняющих перезарядку внутренних цепей при закрытии страницы (т.е. при дезактивации сигналаRAS), синхронная память проделывает эту операцию автоматически, позволяя держать страницы открытыми столь долго, сколько это угодно.

Наконец, разрядность линий данных увеличилась с 32 до 64 бит, что еще вдвое увеличило ее производительность.

Пакетная EDO RAM

Пакетная память EDORAM(англ.burstextendeddataoutputDRAM,BEDODRAM) стала дешёвой альтернативой памяти типаSDRAM. Основанная на памятиEDODRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типаSDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.

Как указывалось ранее, динамическая память требует регенерации (восстановления) информации, производимой через каждые несколько мс. Это связано с тем, что для хранения одного бита информации в ней используется заряд на конденсаторе, который с течением времени рассасывается. Регенерация памяти заключается в том, что содержимое каждой строки микросхемы DRAM считывается, усиливается и записывается вновь на прежнее место. При регенерации доступ к памяти со стороны процессора или других устройств запрещен, что приводит к снижению производительности ЭВМ.

В соответствии с ранее рассмотренной организацией микросхемы DRAM для регенерации хранимой в ней информации, на микросхему необходимо подать адрес строки (в сопровождении строба RAS) и сигнал чтения. Упрощенная структура системы регенерации содержимого памяти DRAM, состоящей из 256 строк, приведена на рисунке 7.10.

Таймер интервала регенерации следит за своевременным проведением регенерации всех строк микросхем DRAM. Если требуемое время регенерации составляет 4 мс, то для регенерации каждой строки 256- строковой микросхемы DRAM сигнал регенерации (REFRESH) должен вырабатываться через каждые 15,6 мкс. В каждом цикле регенерации осуществляется восстановление содержимого одной строки. При выработке нового сигнала REFRESH содержимое счетчика адреса строки инкрементируется, после чего вырабатываются строб RAS и сигнал чтения памяти MEMR. Основные действия по регенерации содержимого очередной строки осуществляются

Рисунок 7.10 - Структура подсистемы регенерации динамической памяти

внутри самой микросхемы DRAM. Система регенерации отвечает лишь за своевременную регенерацию всех строк, выработку адреса очередной строки и необходимых управляющих сигналов.

КЭШ-память

Повышение производительности процессоров привело к тому, что основная память, построенная на микросхемах DRAM, стала замедлять дальнейшее повышение производительности ЭВМ в целом. Реализация ОП на микросхемах SRAM технически и экономически не оправдана, так как габариты и стоимость микросхем SRAM на 1 бит хранимой информации существенно выше, чем аналогичные показатели у DRAM. Разумным компромиссом для построения экономичных и быстродействующих систем явилось сочетание памяти большого объёма на DRAM и небольшой на микросхемах SRAM.

Слово Cache означает склад, тайник. КЭШ- память не имеет отдельного адресного пространства и не доступна для пользователя. Она является дополнительным и быстродействующим хранилищем копий тех областей информации ОП, к которым, вероятно, в ближайшее время будет обращение. В их число попадают в первую очередь области, примыкающие к выполняемой в данный момент команде, а во вторую – области связанные с ней командами перехода (см. рисунок 7.11).

Рисунок 7.11- Возможная область кэширования ОП

Приведенный рисунок, а также анализ хода выполнения различных программ показывают, что большую часть времени в них выполняются определенные группы команд, которые многократно повторяются. Это свойство программ называется локализацией ссылок. Локализация ссылок происходит во времени и в пространстве. Первое означает, что недавно выполненные команды скорее всего будут затребованы снова. Локализация в пространстве означает, что скорее всего в последующие моменты времени будут выполняться команды, расположенные (по значениям адресов) в непосредственной близости от выполняемой. Заметим, что последовательность выполнения команд для работы КЭШ- памяти не имеет значения.

КЭШ не может хранить копию всей основной памяти, так как её размер во много раз меньше ОП. Поэтому она хранит копии части содержимого ОП. Для записи информации о текущем соответствии содержимого КЭШ-памяти конкретным областям (блокам) ОП используется каталог, находящийся в дополнительной тэговой (ТЭГ) памяти, входящей в состав КЭШ- памяти. При обращении к ОП контроллер КЭШ- памяти (ККП) с помощью каталога в ТЭГ проверяет, есть ли копия затребованных данных (или команды) в КЭШе. Если она там есть, то это случай так называемого КЭШ- попадания и данные берутся из КЭШа. Если нет (случай КЭШ - промаха), то данные берутся из основной памяти, вводятся в процессор и записываются в КЭШ. При попадании в КЭШ время доступа к подсистеме памяти КЭШ+DRAM уменьшается и основная память представляется процессору более быстрой, чем есть на самом деле.

КЭШ прямого отображения

Принцип работы КЭШ прямого отображения проиллюстрирован на рисунке 7.12.

Рисунок 7.12- Структура КЭШ прямого отображения

В таблице 7.2 приведено разбиение полного адреса ячейки DRAM на поля.

Таблица 7.2- Распределение полного адреса ячейки DRAM

Рассмотрим принцип работы КЭШ прямого отображения на примере КЭШ объёмом 256 Кбайт с размером строки 32 байта (4 x 8 байт) и объёмом кэшируемой основной памяти 64 Мбайт. Кэшируемая основная память при этом условно разбивается на блоки, размер которых равен размеру КЭШ – памяти. Для рассматриваемого случая количество блоков равно: 64 Мбайт/ 256 Кбайт = 256. В свою очередь КЭШ- память делится на строки, длина которых равна количеству байт, передаваемых процессором в одном пакетном цикле (пакете) (4 x 4 байт =16 для процессора INTEL 486 и 4 x 8 байт = 32 байта для Pentium - процессоров). При размере КЭШ в 256 Кбайт число строк КЭШ для Pentium будет равно 256 Кбайт / 32 байт = 8 К.

В КЭШ прямого отображения средняя часть адреса (Index), по которому производится обращение, однозначно определяет строку КЭШ, в которой может находиться отображение соответствующей строки блока DRAM. На запись в каждую строку КЭШа могут претендовать только одноимённые строки всех блоков основной памяти (откуда и название данного типа КЭШ), но конкретная строка КЭШа в некоторый момент времени может содержать копию только одной строки некоторого блока ОП. Номер блока основной памяти, строка которого отображается в КЭШ, или старшая часть адреса (А18…А25 для КЭШ и ОП рассматриваемых размеров) оперативной памяти называется тегом (Tag) и хранится в дополнительной памяти тегов (Tag SRAM). Младшие пять разрядов адреса (для пакета в 32 байта) определяют номер байта в строке КЭШ памяти и для работы КЭШ памяти несущественны, т.к. минимальной единицей кэширования является строка.

Память тегов должна иметь количество ячеек, равное количеству строк КЭШа (объём КЭШ делится на длину строки КЭШ в байтах), а её разрядность должна вмещать старшие биты адреса кэшируемой памяти.

Кроме адресной части Tag с каждой строкой связаны биты признака действительности строки (V-Valid) и модифицированности данных (М-Mod).

В начале каждого обращения к кэшируемой памяти контроллер ККП считывает содержимое ячейки Tag с заданным индексом и сравнивает его со старшими битами D18…D25, адреса строки DRAM, подлежащей чтению. Сравнение осуществляется цифровым компаратором, входящим в состав КЭШ- контроллера. Если результат сравнения отрицателен (случай КЭШ- промаха), то вырабатывается цикл чтения основной памяти и считанные с нее данные вводятся в процессор, помещаются в соответствующую строку КЭШ, в Tag строки записывается старшая часть адреса, а бит V - достоверности, устанавливается в 1. В случае попадания в КЭШ при значении бита достоверности равным 1 данные берутся из КЭШ- памяти и обращение к DRAM не производится.

В начале цикла записи работа подсистемы памяти (КЭШ+DRAM) не отличается от цикла чтения. В случае промаха запись осуществляется сразу в строку DRAM, в случае попадания - в строку КЭШ (без изменения содержимого Tag соответствующей строки) и с установкой в 1 бита модифицируемости M строки КЭШ. Однако при этом нарушается согласованность (когерентность) данных в КЭШ и DRAM, что может привести к сбою работы всей системы и ККП должен выровнять содержимое КЭШ и DRAM до следующего обращения к этой строке DRAM. Поведение ККП в этом случае определяется его политикой записи.

Существуют два основных алгоритма записи данных из КЭШ - памяти в основную: сквозная запись WT (Write Through) и обратная (отложенная) запись WB (Write Back).

Алгоритм WT предусматривает выполнение каждой операции записи сразу и в КЭШ память и в DRAM. При этом каждая операция записи равносильна записи в DRAM и использование КЭШ- памяти не даёт никакого выигрыша при операциях записи (бит М в этом случае в составе КЭШ не используется).

При алгоритме WB запись со стороны процессора осуществляется только в строку КЭШ, при этом бит М устанавливается в 1, т. е. соответствующая строка в КЭШ отмечается как модифицированная или грязная, т. е. требующей записи в основную память. После копирования в DRAM строка становится чистой и бит М снова устанавливается в 0.

ККП старается осуществить копирование в промежутках между обращениями процессора к остальной системе, и только в крайнем случае (например, при попытке повторной записи в модифицированную строку КЭШ), копирование выполняется в первую очередь.

В системах с несколькими ведущими запись в DRAM могут осуществлять и другие устройства, например подсистема ПДП. В этом случае содержимое соответствующих строк КЭШ и DRAM также может оказаться различным, но уже из-за изменения строки DRAM.

Для устранения такой возможности адрес изменяемой строки DRAM при захвате шины другим ведущим передаётся в КЭШ второго (L2) и первого (L1) уровней. При этом процессор, находящийся в состоянии захвата его шины отслеживает адреса изменённых строк DRAM и в результате устанавливает биты их достоверности V в ноль.

Наборно- ассоциативный КЭШ

Его можно рассматривать как набор нескольких (например 4-х) КЭШ прямого отображения. В наборно-ассоциативной КЭШ - памяти каждая строка DRAM может размещаться в одной из нескольких строк КЭШ. В этом случае в состав TAG вводят ещё дополнительное поле, по которому ККП определяет, к какой строке КЭШ было самое давнее обращение, и которая следовательно, может быть заменена. Дополнительным усложнением является то, что старшая часть текущего адреса системы должна сравниваться с содержимым нескольких ТЭГ. КЭШ такого типа используются как внутренняя (L1) КЭШ память процессоров.

В процессорах Pentium внутренняя КЭШ- память имеет объем в 32 Кбайта. Она разбита на две равные части по 16 Кбайт - КЭШ кода программы и данных.

7.8 Контрольные вопросы

1. Какие отличия в организации изолированной и совмещенной систем адресных шин?

2. Перечислите достоинства и недостатки изолированной и совмещенной систем адресных шин.

3. Перечислите основные типы ПЗУ.

4. Как определяется необходимое число микросхем для построения памяти нужной емкости и разрядности?

5. Какие отличия между памятью статического и динамического типа?

6. Перечислите основные узлы подсистемы регенерации.

7. Что такое регенерация DRAM?

8. Назначение КЭШ- памяти?

9. Что обозначает название- КЭШ прямого отображения?

10. Назначение битов V и M в тэге КЭШ- памяти?

11. Отличия алгоритмов сквозной и отложенной записи?

12. Какими показателями КЭШ- памяти определяется объем кэширования ОП?


ОРГАНИЗАЦИЯ ПК

Типы оперативной памяти

Различают следующие типы оперативной памяти:

● DRDRAM и т. д.

FPM DRАМ

FPM DRAM (Fast Page Mode DRAM) - динамическая память с быстрым страничным доступом, активно используется с микропроцессорами 80386 и 80486. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную установку адреса столбца, стробируемого CAS. Это позволяет ускорить блочные передачи, когда весь блок данных или его часть находятся внутри одной строки матрицы, называемой в этой системе страницей. Существуют две разновидности FPM DRAM, различающиеся временем обращения: 60 и 70 нс. Ввиду своей медлительности они не эффективны в системах с процессорами уровня Pentium II. Модули FPM DRAM в основном выпускались в конструктиве SIMM.

RAM EDO (EDO - Extended Data Out, расширенное время удержания (доступности) данных на выходе) фактически представляет собой обычные микросхемы FPM, к которым добавлен набор регистров-защелок, благодаря чему данные на выходе могут удерживаться в течение следующего запроса к микросхеме. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходе содержимое последней выбранной ячейки, в то время как на их входы уже подается адрес следующей выбираемой ячейки. Это позволяет примерно на 15% по сравнению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память никакого выигрыша в быстродействии не дает. Память типа RAM EDO имеет минимальное время обращения 45 нс и максимальную скорость передачи данных по каналу процессор-память 264 Мбайт/с. Модули RAM EDO выпускались в конструктива SIMM и DIMM.

BEDO DRAM

ВЕDО DRАМ (Burst Extended Data OutPut, EDO с блочным доступом). Современные процессоры благодаря внутреннему и внешнему кэшированию команд

и данных обмениваются с основной памятью преимущественно блоками слов максимальной длины. Этот вид памяти позволяет обрабатывать данные пакетно (блоками) так, что данные считываются блоками за один такт. В случае памяти BEDO отпадает необходимость постоянной подачи последовательных адресов на входы микросхем с соблюдением необходимых временных задержек - достаточно стробировать переход к очередному слову блока. Этот метод позволяет BEDO DRAM работать очень быстро. Память BEDO РКАМ поддерживают некоторые чипсеты фирм VIA Apollo (580VP, 590VP, 680VP) и Intel (i480TX и т. д.) на частоте шины не выше 66 МГц. Активную конкуренцию этому виду памяти составляет память SDRAM, которая постепенно ее и вытесняет. BEDO DRAM представлена модулями и SIMM и DIMM.

SDRAM (Synchronous DRAM - синхронная динамическая память), память с синхронным доступом, увеличивает производительность системы за счет синхронизации скорости работы ОЗУ со скоростью работы шины процессора. SDRAM также осуществляет конвейерную обработку информации, выполняя внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также поддерживает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где удается исключить дополнительные такты ожидания. Память SDRAM может устойчиво функционировать на высоких частотах: выпускаются модули, рассчитанные на работу при частотах 100 МГц (спецификация РС100) и 133 МГц (РС133). В начале 2000 года фирма Samsung объявила о выпуске новых интегральных микросхем (ИС) SDRAM с рабочей частотой 266 МГц. Время обращения к данным в этой памяти зависит от внутренней тактовой частоты МП и достигает 5 - 10 нс, максимальная скорость передачи данных «процессор-память» при частоте шины 100 МГц составляет 800 Мбайт/с (фактически равна скорости передачи данных по каналу процессор-кэш). Память SDRAM дает общее увеличение производительности ПК примерно на 25%. Правда, эта цифра относится к работе ПК без кэш-памяти, - при наличии мощной кэш-памяти выигрыш в производительности может составить всего несколько процентов. SDRAM обычно выпускается в 168-контактных модулях типа DIMM и имеет 64-разрядную шину данных. Используется не только в качестве оперативной памяти, но и как память видео- адаптеров, где она полезна при просмотре живого видео и при работе с трехмерной графикой.

DDR SDRAM

DDR SDRAM (Double Data Rate SDRAM - SDRAM II). Вариант памяти SDRAM, осуществляющий передачу информации по обоим фронтам тактового сигнала. Это позволяет удвоить пропускную способность по сравнению с традиционной памятью SDRAM (до 1,6 Гбайт/с при частоте шины 100 МГц). Кроме того, DDR SDRAM может работать на более высокой частоте - в начале 2000 года были выпущены 143, 166 и 183 МГц 64-мегабитовые модули DDR

SDRAM. Модули DDR DRAM конструктивно совместимы с традиционными 168-контактными DIMM. Используются не только в качестве элементов оперативной памяти, но и в высокопроизводительных видеоадаптерах. Сейчас они ориентированы в первую очередь на рынок видеоадаптеров. В конце 2001 года компания Нуniх Semiconductor представила образец 128 Мбит DDR SDRAM (0,16 мкм). Его тактовая частота 375 МГц - самая высокая частота для DDR SDRAM на сегодняшний день (2003 год).

DRDRAM (Direct Rambus DRAM - динамическая память с прямой шиной для RAM) - перспективный тип оперативной памяти, позволивший значительно увеличить производительность компьютеров. Высокое быстродействие памяти Direct RDRAM достигается рядом особенностей, не встречающихся в других типах. В частности, применением собственной двухбайтовой шины Rambus с частотой 800 МГц, обеспечивающей пиковую пропускную способность до 1,6 Гбайт/с. Контроллер памяти Direct RDRAM управляет шиной Rambus и обеспечивает преобразование ее протокола с частотой 800 МГц в стандартный 64-разрядный интерфейс с частотой шины до 200 МГц. Фирма Intel выпустила чипсеты i820, i840, i850 с поддержкой DRDRAM. Модули Direct RDRAM - RIMM внешне подобны модулям DIM M.

В маркировке SDRAM и DRDRAM (часто именуемой также как RDRAM) обычно указывается рабочая частота модуля в виде, например, обозначения РС150, что для SDRAM означает пиковую пропускную способность 1200 Мбайт/с - такую же, как у PC600 для DRDRAM (ввиду малоразрядности шины последней). Правда, многие чипсеты (например i850) поддерживают двухканальный обмен с памятью DRDRAM, что удваивает ее пропускную способность.

Для DDRDRAM указание РС150 подразумевало бы пропускную способность 2400 Мбайт/с - в 2 раза большую, чем для SDRAM (ввиду передачи информации по двум фронтам импульса). Но для DDR принято в маркировке около букв РС указывать не рабочую частоту, а саму пропускную способность. То есть маркировка РС2400 для DDRDRAM означает DDR-память с рабочей частотой 150 МГц (возможное обозначение такой памяти, как DDR150).

Увеличение разрядности и частоты шины Rambus, обещанное в ближайшие годы, делает память DRDRAM, несмотря на ее высокую стоимость, весьма перспективной. Так, компания Samsung наметила в конце 2003 года выпустить 64-битовую память (с четырьмя 16-битовыми каналами), имеющую пропускную способность 8500 Мбайт/с (РС1066) и 9600 Мбайт/с (РС120 0). Ближайшие перспективы DDRDRAM ненамного скромнее: фирма Нуniх Semiconducta анонсировала 512-мегабитовые чипы DDR, изготовленные по 0,10 мкм-технологии с рабочими частотами 266, 333 и 400 МГц (скорость обмена до 6400 Мбайт/с). Характеристики отдельных видов памяти представлены в табл. 6.2. В конце 2002 года появилось сообщение о создании компаниями Toshiba и Infineon Technologies AG новой ферроэлектрической микросхемы энергонезависимой памяти (FeRAM - Ferroelectric Random Access non-volatile Memory) емкостью 32 Мбит, по пропускной способности сравнимой с ЯРКАМ.

Компании IBM и Infineon Technologies разработали технологию магнитной оперативной памяти с произвольной выборкой (MRAM). Работает MRAM аналогично флэш-памяти (Flash) и является энергонезависимой. IBM сообщила, что MRAM сможет заменить существующие разновидности DRAM уже к 2005 году. Компьютер с MRAM будет загружаться практически мгновенно.

*************************************