Pci express 3.0 скорость передачи данных. SSD с интерфейсом PCI Express: обзор и тестирование пяти моделей

  • ASUS ZenFone Lazer с МЕГАСКИДКОЙ в Ситилинке
  • 8600K - забирай задешево в XPERT.RU
  • Зеркалка Canon cо скидкой по промокоду FRIDAY

Вы можете отметить интересные вам фрагменты текста,
которые будут доступны по уникальной ссылке в адресной строке браузера.

Разъяснения по PCI Express 2.0 и потребляемой мощности

Lexagon 17.01.2007 17:17 | версия для печати | | архив

Хотя официальные спецификации PCI Express 2.0 уже опубликованы, и мы успели познакомиться с новым типом разъёма для дополнительного питания видеокарт с 8 штырьками , внятных данных о пределах потребляемой мощности новых видеокарт вчера никто не привёл. Как мы уже сообщили, доступ к документации по PCI Express 2.0 имеют только разработчики.

Сегодня мы успели обобщить опубликованную зарубежными коллегами информацию и вспомнить старые новости , что позволило сформировать более точное представление о мощности, передаваемой по слоту PCI Express x16 версии PCI Express 2.0 и дополнительному 8-штырьковому разъёму питания. Больше всего нам помогли коллеги с германского сайта K-Hardware .

Они пояснили, что дополнительный разъём питания нового типа с 8 штырьками способен обеспечить 150 Вт мощности. Прежние 6-штырьковые разъёмы питания обеспечивали только 75 Вт мощности, поэтому на GeForce 8800 GTX их две штуки. Непосредственно по интерфейсному разъёму PCI Express x16 в версии 2.0 будет обеспечиваться до 150 Вт мощности. Легко сосчитать, что такая видеокарта с 8-штырьковым разъёмом питания теоретически способна потреблять до 300 Вт. По некоторым оценкам, в текущем году уровень энергопотребления видеокарт ограничится значением 225 Вт или чуть большим.

Заметим, что видеокарты на базе чипа R600 должны потреблять примерно 225-230 Вт. Почему на прототипе видеокарты мы видим один 6-штырьковый разъём питания и один 8-штырьковый разъём питания? Очевидно, первое поколение видеокарт на базе чипа R600 ещё не будет соответствовать спецификациям PCI Express 2.0, поэтому недостающую мощность они будут получать через дополнительные разъёмы питания. Возможно, AMD идёт навстречу владельцам блоков питания с новым восьмиштырьковым разъёмом, устанавливая на видеокарту одно гнездо соответствующего типа. По этому каналу видеокарта сможет получить 150 Вт мощности, ещё 75 Вт обеспечит слот PCI Express x16, в итоге нужный "силовой баланс" будет соблюдён.

Владельцы же старых блоков питания с шестиштырьковыми разъёмами смогут подключить к R600 сразу два таких штекера, один из них воткнув в восьмиштырьковое гнездо. Три раза по 75 Вт в итоге тоже дают искомые 225 Вт, поэтому R600 сможет работать и в системах со "старыми" блоками питания достаточной мощности. Кроме того, желающие смогут использовать переходники питания.

Ещё раз успокоим противников технического прогресса: материнские платы с поддержкой PCI Express 2.0 будут иметь слоты PCI Express x16 прежнего типа, в которые можно будет установить существующие видеокарты предыдущего поколения. Все различия интерфейса PCI Express второго поколения будут заключаться в скорости работы, поддерживаемой мощности и некоторых функциональных новшествах. На совместимости с видеокартами поколения PCI Express 1.x это никак не отразится.

Введение

Закон Мура гласит, что количество транзисторов на кристалле кремния, который выгодно производить, удваивается каждые пару лет. Но не нужно думать, что скорость процессора тоже удваивается каждые пару лет. Подобное заблуждение встречается у многих, и пользователи часто ожидают масштабирования производительности ПК по экспоненте.

Впрочем, как вы наверняка заметили, топовые процессоры на рынке застряли на уровне между 3 и 4 ГГц уже лет шесть. И компьютерной индустрии пришлось искать новые способы увеличения производительности вычислений. Наиболее важный из этих способов заключается в поддержании баланса между компонентами платформы, которые используют шину PCI Express – открытый стандарт, который позволяет скоростным видеокартам, картам расширения и другим комплектующим обмениваться информацией. И интерфейс PCI Express не менее важен для масштабирования производительности, чем многоядерные процессоры. Если двуядерные, четырёхъядерные и шестиядерные процессоры можно нагрузить только с помощью приложений, оптимизированных под многопоточность, любая программа, установленная на вашем компьютере, так или иначе взаимодействует с компонентами, подключёнными через PCI Express.


Многие журналисты и специалисты ожидали, что материнские платы и чипсеты с поддержкой интерфейса PCI Express 3.0 следующего поколения появятся в первом квартале 2010. К сожалению, проблемы с обратной совместимостью отсрочили выход PCI Express 3.0, и сегодня прошло уже полгода, но мы до сих пор ждём официальной информации по поводу публикации нового стандарта.

Впрочем, мы пообщались с группой PCI-SIG (Special Interest Group, которая отвечает за стандарты PCI и PCI Express), что позволило нам получить некоторые ответы.

PCI Express 3.0: планы

Эл Янс (Al Yanes), президент и председатель PCI-SIG, и Рамин Нешати (Ramin Neshati), председатель PCI-SIG Serial Communications Workgroup, поделились текущими планами по поводу внедрения PCI Express 3.0.




Нажмите на картинку для увеличения.

23 июня 2010 вышла версия 0.71 спецификации PCI Express 3.0. Янс утверждал, что версия 0.71 должна устранить все проблемы с обратной совместимостью, которые привели к первоначальной задержке. Нешати отметил, что основная проблема с совместимостью заключалась в функции "DC wandering", которую он объяснил так, что устройства PCI Express 2.0 и более ранние "не давали нужных нуликов и единичек", чтобы соответствовать интерфейсу PCI Express 3.0.

Сегодня, когда проблемы с обратной совместимостью решены, PCI-SIG готова представить базовую версию 0.9 "позднее этим летом". И за этой базовой версией ожидается уже версия 1.0 в четвёртом квартале этого года.

Конечно, самый интригующий вопрос заключается в том, когда материнские платы PCI Express 3.0 появятся на прилавках магазинов. Нешати отметил, что он ожидает появления первых продуктов в первом квартале 2011 года (треугольник "FYI" на картинке с планом).

Нешати добавил, что между версиями 0.9 и 1.0 не должно произойти изменений на уровне кристалла кремния (то есть все изменения будут затрагивать только программное обеспечение и прошивку), так что некоторые продукты должны выйти на рынок ещё до появления финальной спецификации 1.0. И продукты уже могут сертифицироваться для списка PCI-SIG "Integrator’s List" (треугольник "IL"), который является вариантом логотипа соответствия PCI-SIG.

Нешати в шутку назвал третий квартал 2011 как дату "Fry’s and Buy" (вероятно, ссылаясь на сайты Frys.com, Buy.com или Best Buy). То есть в этот период мы должны ожидать появление большого количества продуктов с поддержкой PCI Express 3.0 в розничных магазинах и в интернет-магазинах.

PCI Express 3.0: разработан для скорости

Для конечных пользователей основное отличие между PCI Express 2.0 и PCI Express 3.0 будет заключаться в значительном увеличении максимальной пропускной способности. У PCI Express 2.0 сигнальная скорость передачи составляет 5 GT/s, то есть пропускная способность равняется 500 Мбайт/с для каждой линии. Таким образом, основной графический слот PCI Express 2.0, который обычно использует 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

У PCI Express 3.0 мы получим удвоение этих показателей. PCI Express 3.0 использует сигнальную скорость 8 GT/s, что даёт пропускную способность 1 Гбайт/с на линию. Таким образом, основной слот для видеокарты получит пропускную способность до 16 Гбайт/с.

На первый взгляд увеличение сигнальной скорости с 5 GT/s до 8 GT/s не кажется удвоением. Однако стандарт PCI Express 2.0 использует схему кодирования 8b/10b, где 8 бит данных передаются в виде 10-битных символов для алгоритма устранения ошибок. В итоге мы получаем 20% избыточность, то есть снижение полезной пропускной способности.

PCI Express 3.0 переходит на намного более эффективную схему кодирования 128b/130b, устраняя 20% избыточность. Поэтому 8 GT/s – это уже не "теоретическая" скорость; это фактическая скорость, сравнимая по производительности с сигнальной скоростью 10 GT/s, если бы использовался принцип кодирования 8b/10b.




Нажмите на картинку для увеличения.

Мы поинтересовались у Янса насчёт устройств, которые потребуют повышение в скорости. Он ответил, что они будут включать "коммутаторы PLX, контроллеры Ethernet 40 Гбит/с, InfiniBand, твёрдотельные устройства, которые становятся всё популярнее, и, конечно, видеокарты". Он добавил "Мы не исчерпали инновации, они появляются не статически, это непрерывный поток", они открывают путь для дальнейших улучшений в будущих версиях интерфейса PCI Express.

Анализ: где мы будем использовать PCI Express 3.0?

Накопители

AMD уже интегрировала поддержку SATA 6 Гбит/с в свою 8-ю линейку чипсетов, да и производители материнских плат добавляют контроллеры USB 3.0. Intel в этой области немного отстаёт, поскольку не поддерживает в чипсетах USB 3.0 или SATA 6 Гбит/с (у нас в лаборатории уже появились предварительные образцы материнских плат на P67, и у них присутствует поддержка SATA 6 Гбит/с, но USB 3.0 в этом поколении мы не получим). Впрочем, как мы уже неоднократно видели в противостоянии AMD и Intel, инновации AMD часто вдохновляют Intel. Учитывая скорости интерфейса накопителей следующего поколения и периферии, пока нет необходимости переносить любую из технологий на PCI Express 3.0. И для USB 3.0 (5 Гбит/с), и для SATA 6 Гбит/с (пока ещё не появилось накопителей, которые бы подошли к пределам этого интерфейса) будет достаточно одной линии PCI Express второго поколения.

Конечно, когда дело касается накопителей, то взаимодействие между приводами и контроллерами – это только часть вопроса. Представьте себе массив из нескольких SSD с интерфейсом SATA 6 Гбит/с у чипсета, когда массив RAID 0 потенциально может нагрузить одну линию PCI Express второго поколения, которую большинство производителей материнских плат используют для подключения контроллера. Так что определиться с тем, могут ли интерфейсы USB 3.0 и SATA 6 Гбит/с действительно требовать поддержки PCI Express 3.0, можно после несложных подсчётов.




Нажмите на картинку для увеличения.

Как мы уже упоминали, интерфейс USB 3.0 даёт максимальную скорость 5 Гбит/с. Но и как стандарт PCI Express 2.1, USB 3.0 использует кодирование 8b/10b, то есть фактическая пиковая скорость составляет 4 Гбит/с. Поделите биты на восемь, чтобы преобразовать в байты, и вы получите пиковую пропускную способность 500 Мбайт/с – как раз такую же, что и у одной линии нынешнего стандарта PCI Express 2.1. SATA 6 Гбит/с работает со скоростью 6 Гбит/с, но здесь тоже используется схема кодирования 8b/10b, в результате которой теоретические 6 Гбит/с превращаются в фактические 4,8 Гбит/с. Опять же, преобразуйте это значение в байты, и вы получите 600 Мбайт/с или на 20% больше, чем может обеспечить линия PCI Express 2.0.

Впрочем, проблема кроется в том, что даже самые быстрые SSD сегодня не могут полностью загрузить подключение SATA 3 Гбит/с. Периферия и близко не подходит к нагрузке интерфейса USB 3.0, то же самое можно сказать и про последнее поколение SATA 6 Гбит/с. По крайней мере, сегодня интерфейс PCI Express 3.0 не является необходимым для активного его продвижения на рынке платформ. Но будем надеяться, что по мере перехода Intel на производство флэш-памяти NAND третьего поколения, тактовые частоты будут возрастать, и мы получим устройства, способные превысить уровень 3 Гбит/с у портов SATA второго поколения.

Видеокарты

Мы проводили собственные исследования влияния пропускной способности PCI Express на производительность видеокарт – после выхода на рынок PCI Express 2.0 , в начале 2010 года , а также и совсем недавно . Как мы обнаружили, очень сложно нагрузить пропускную способность x16, которая на данный момент доступна у материнских плат PCI Express 2.1. Вам потребуется конфигурация на нескольких GPU или экстремальная high-end видеокарта на одном GPU, чтобы вы смогли обнаружить разницу между подключениями x8 и x16.

Мы попросили AMD и Nvidia прокомментировать потребность в PCI Express 3.0 - потребуется ли эта скоростная шина для раскрытия всего потенциала производительности видеокарт следующего поколения? Представитель AMD сообщил нам, что пока не может давать комментарии.


Нажмите на картинку для увеличения.

Представитель Nvidia оказался более сговорчивым: "Nvidia играла одну из ключевых ролей в индустрии при разработке PCI Express 3.0, который должен в два раза увеличить пропускную работу стандарта текущего поколения (2.0). Когда происходят подобные существенные увеличения пропускной способности, то появляются приложения, которые могут их использовать. От нового стандарта выиграют потребители и профессионалы, благодаря увеличенной производительности графики и вычислений в ноутбуках, настольных ПК, рабочих станциях и серверах, где есть GPU".

Возможно, ключевой можно назвать фразу "появятся приложения, которые могут их использовать". Похоже, в мире графики ничего не уменьшается. Дисплеи становятся больше, высокое разрешение выходит на смену стандартному разрешению, текстуры в играх становятся всё более детализованными и интригующими. Сегодня мы не считаем, что даже у новейших топовых видеокарт есть потребность в использовании интерфейса PCI Express 3.0 с 16 линиями. Но энтузиасты из года в год наблюдают повторение истории: прогресс технологии прокладывает путь для новых способов задействовать "более толстые трубы". Возможно, мы получим взрывной рост приложений, которые сделают вычисления на GPU более массовыми. Или, возможно, падение производительности, которое наблюдается при выходе за пределы памяти видеокарты, когда начинается подкачка из системной памяти, будет уже не таким ощутимым у массовых и low-end продуктов. В любом случае, нам предстоит увидеть инновации, которые PCI Express 3.0 позволит реализовать AMD и Nvidia.

Подключения компонентов материнской платы

AMD и Intel всегда очень неохотно делятся информацией по поводу интерфейсов, которые они используют для связи компонентов чипсета или логических "кирпичиков" в северном/южном мостах. Мы знаем скорость, с которой работают эти интерфейсы, а также и то, что они разрабатываются так, чтобы, по возможности, не создавать "узких мест". Иногда мы знаем, кто произвёл определённую часть системной логики, например, AMD использовала в SB600 контроллер SATA на основе разработки Silicon Logic. Но технологии, используемые для наведения мостиков между компонентами, часто остаются "белыми пятнами". PCI Express 3.0, конечно, кажется весьма привлекательным решением, наподобие интерфейса A-Link, который использует AMD.

Недавнее появление контроллеров USB 3.0 и SATA 6 Гбит/с на большом количестве материнских плат тоже позволяет оценить ситуацию. Поскольку чипсет Intel X58 не предоставляет "родную" поддержку ни одной из двух технологий, компаниям, таким как Gigabyte, приходится интегрировать на материнские платы контроллеры, используя для их подключения доступные линии.

У материнской платы Gigabyte EX58-UD5 нет поддержки ни USB 3.0, ни SATA 6 Гбит/с. Однако у неё есть слот x4 PCI Express.




Нажмите на картинку для увеличения.

Gigabyte заменила материнскую плату EX58-UD5 новой моделью X58A-UD5, которая имеет поддержку двух портов USB 3.0 и двух портов SATA 6 Гбит/с. Где Gigabyte нашла пропускную способность, чтобы поддержать две этих технологии? Компания взяла под одной линии PCI Express 2.0 для каждого контроллера, урезав возможности по установке карт расширения, но вместе с тем обогатив функциональность материнской платы.

Помимо добавления USB 3.0 и SATA 6 Гбит/с, единственное заметное отличие между двумя материнскими платами касается удаления слота x4.




Нажмите на картинку для увеличения.

Позволит ли интерфейс PCI Express 3.0, как стандарты до него, добавлять на материнские платы будущие технологии и контроллеры, которые не будут присутствовать в текущих поколениях чипсетов в интегрированном виде? Как нам кажется, так и будет.

CUDA и параллельные вычисления

Мы вступаем в эпоху настольных суперкомпьютеров. В наших системах работают графические процессоры с интенсивной параллельной обработкой данных, а также блоки питания и материнские платы, способные поддерживать одновременную работу до четырёх видеокарт. Технология Nvidia CUDA позволяет преобразовать видеокарту в инструмент для программистов по расчётам не только в играх, но и в научных сферах, и в инженерных приложениях. Интерфейс программирования уже прекрасно зарекомендовал себя при разработке разнообразных решений для корпоративного сектора , включая обработку изображений в медицине, математику, работы по разведыванию месторождений нефти и газа.




Нажмите на картинку для увеличения.

Мы поинтересовались мнением программиста OpenGL Терри Велша (Terry Welsh) из компании Really Slick Screensavers насчёт PCI Express 3.0 и вычислений на GPU. Терри сообщил нам, что "PCI Express получил хороший рывок, и мне нравится, что разработчики удваивают пропускную способность когда захотят - как с версией 3.0. Однако в проектах, над которыми мне приходится работать, я не ожидаю увидеть какую-либо разницу. Большая часть моей работы связана с авиасимуляторами, но они, как правило, упираются в память и производительность ввода/вывода жёсткого диска; графическая шина не является "узким местом" вообще. Но я могу с лёгкостью предвидеть, что шина PCI Express 3.0 обусловит существенное продвижение вперёд для сферы вычислений на GPU; для людей, которые выполняют научную работу с большими массивами данных".




Нажмите на картинку для увеличения.

Возможность удвоить скорость передачи данных при работе с нагрузками, интенсивно использующими математику, безусловно, мотивирует разработки CUDA и Fusion. И в этом заключается одна из самых обещающих сфер для грядущего интерфейса PCI Express 3.0.

Любой геймер с чипсетом Intel P55 может рассказать о преимуществах и недостатках Intel P55 по сравнению с чипсетом Intel X58. Преимущество: большинство материнских плат на чипсете P55 стоят более разумно, чем модели на Intel X58 (в целом, конечно). Недостаток: у P55 минимальные возможности по подключению PCI Express, основная задача возложена на процессоры Intel Clarkdale и Lynnfield, которые обладают 16 линиями PCIe второго поколения в самом CPU. Между тем, X58 может похвастаться 36 линиями PCI Express 2.0.

Для покупателей P55, которые желают использовать две видеокарты, их придётся подключать через x8 линий каждую. Если вы захотите добавить к платформе Intel P55 третью видеокарту, то придётся использовать линии чипсета - но они, к сожалению, ограничены скоростью первого поколения, да и чипсет может выделить, максимум, четыре линии для слота расширения.


Когда мы поинтересовались у Эла Янса из PCI-SIG тем, сколько линий можно ожидать в чипсетах с поддержкой PCI Express 3.0 от AMD и Intel, то он ответил, что это "частная информация", которую он "не может раскрыть". Конечно, мы не ожидали получить ответ, но вопрос всё равно задать стоило. Впрочем, вряд ли AMD и Intel, которые входят в состав PCI-SIG Board of Directors, стали бы инвестировать время и деньги в PCI Express 3.0, если бы они планировали использовать новый стандарт PCI Express просто как средство снижения числа линий. Как нам кажется, в будущем чипсеты AMD и Intel будут по-прежнему сегментироваться так, как мы наблюдаем сегодня, у high-end платформ будет достаточно возможностей для подключения пары видеокарт с полным интерфейсом x16, а у чипсетов для массового рынка число линий будет урезано.

Представьте себе чипсет, подобный Intel P55, но с 16 доступными линиями PCI Express 3.0. Поскольку эти 16 линий работают в два раза быстрее PCI Express 2.0, то мы получим эквивалент 32 линиям старого стандарта. В такой ситуации от Intel будет зависеть, пожелает ли она сделать чипсет совместимым с конфигурациями 3-way и 4-way GPU. К сожалению, как мы уже знаем, чипсеты следующего поколения Intel P67 и X68 будут ограничены поддержкой PCIe 2.0 (а процессоры Sandy Bridge будут точно так же ограничены поддержкой 16 линий на кристалле).


Помимо параллельных вычислений CUDA/Fusion, мы также видим рост возможностей систем для массового рынка благодаря повышению скорости связи компонентов PCI Express 3.0 - здесь, как нам кажется, тоже скрыт немалый потенциал. Вне всякого сомнения, PCI Express 3.0 улучшит возможности недорогих материнских плат, которые в предыдущем поколении были доступны только high-end платформам. А high-end платформы, получившие в своё распоряжение PCI Express 3.0, позволят нам поставить новые рекорды по производительности благодаря инновациям в графике, подсистеме хранения данных и сетевых технологиях, которые смогут использовать доступную пропускную способность шины.

Эффективно удваивает пропускную способность и обеспечивает лучшую гибкость, сохраняя совместимость с PCIe 1.1.

даёт в два раза большую пропускную способность, чем PCI Express 1.1, удвоив её с 250 Мбайт/с до 500 Мбайт/с на линию (в одном направлении). Поэтому даёт такую же пропускную способность, что и PCI Express 2.0 x8.

Чтобы выиграть от более высокой пропускной способности, стандарт PCIe 2.0 должны поддерживать как , так и . Если ATI весьма быстро интегрировала поддержку PCIe 2.0 в линейку , то лишь последнее поколение видеокарт и совместимо с PCIe 2.0.

Слоты PCI Express 1.1 и 2.0 механически идентичны. Верхний слот имеет 164 контакта, которые требуются для интерфейса x16 , а нижний слот — 36 контактов для PCI Express x1.

PCI Express 2.0: соединения

Одна линия использует две пары соединений, работающих на тактовой частоте 2,5 ГГц.

С помощью кодирования 8/10 битов (то есть по шине проходит 10 битов, из которых только 8 используются для передачи полезных данных), одна линия чистую пропускную способность 250 Мбайт/с в одном направлении. Поскольку у линии две пары, то такую пропускную способность вы получите как в прямом, так и в обратном направлении. и намного большую пропускную способность, используя несколько линий. Так, x8 восемь линий, которые дают пропускную способность 4 Гбайт/с (сумма по двум направлениям), что в восемь раз больше, чем у одной линии. А , который стал де-факто стандартом для видеокарт, даёт пропускную способность 8 Гбайт/с (суммарную).

PCI Express 2.0: что нового?

Стандарт удвоил базовую частоту до 5,0 ГГц, что привело к увеличению пиковой пропускной способности до 16 Гбайт/с у x16 PCI Express (в сумме по двум направлениям). PCI Express 2.0 обеспечил производителям большую гибкость. Поскольку четыре линии PCI Express 2.0 дают такую же пропускную способность, как восемь линий то вполне можно прокладывать такое же количество дорожек, удваивая пропускную способность, или оптимизировать энергопотребление, переходя с PCIe 1.1 на 2.0 и уменьшая число дорожек в два раза. Кроме того, PCI Express 2.0 поддерживает и скорости 1.1, что позволяет ещё сильнее экономить энергию, понижая рабочую частоту с 5,0 до 2,5 ГГц, когда высокая пропускная способность не требуется. Если PCI Express 2.0 правильно реализована, то она автоматически распознаёт ширину подключения (от одного до 16 линий) и скорость (2,5 или 5 ГГц). Это также означает, что видеокарты PCI Express 2.0 совместимы с материнскими платами PCIe 1.1: они попросту будут использовать скорость интерфейса 2,5 Гбайт/с.


Ещё одно и 2.0 заключается в максимальной энергии, которую можно подавать на видеокарты PCI Express (PEG). Раньше она составляла 75 Вт плюс 75 Вт через вилку PCI Express 1.1, но PCIe 2.0 поддерживает вплоть до 300 Вт, если интерфейс правильно . Проектировщики видеокарт по-прежнему предпочитают использовать гнёзда дополнительного питания, но , совместимые с PCI Express 2.0, дают дополнительную 8-контактную вилку помимо обычной 6-контактной, которая появилась в момент выхода PCIe в 2004 году.

PCI Express 2.0: преимущества

даёт несколько преимуществ производителям аппаратного обеспечения, которые сложно раскрыть в подобном техническом анализе, как эта статья. С помощью программного обеспечения можно управлять энергопотреблением, добавляя или убирая линии PCI Express, а также меняя частоту соединения. Кроме того, PCI Express 2.0 удовлетворяет требованиям современных карт по энергопотреблению. В то же время, PCIe 2.0 полностью совместим с предыдущим оборудованием, так что потребитель не рискует ничем, а переход от одного поколения графических чипов к другому произойдёт прозрачно. С данной точки зрения мы определённо рекомендуем PCIe 2.0 каждому, поскольку недостатков нет.

Коротко об истории...

Впервые отдельный интерфейс, призванный стать заменой шины PCI для видеокарт, был представлен в 1997 году. AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) - именно так представила свою новую разработку компания Intel одновременно с официальным анонсом чипсета для процессоров Intel Pentium II.


Заявленные преимущества AGP перед его предшественником PCI были существенны:

  • более высокая частота работы (66 МГц);
  • увеличенная пропускная способность между видеокартой и системной шиной;
  • прямая передача информации между видеокартой и оперативной памятью, минуя процессор;
  • улучшенная система питания;
  • высокоскоростной доступ к общей памяти.

Должного развития стандарт AGP 1x (спецификация AGP 1.0) не получил из-за низкой скорости работы с памятью и был практически сразу же усовершенствован, а его скорость удвоена - так появился интерфейс AGP 2x. Передавая за один такт 32 бита (4 байта), порт AGP 2x мог выдавать невиданную по тем временам пиковую производительность 66.6х4х2=533 М B / s .


В 1998 году увидел свет стандарт AGP 4x (спецификация AGP 2.0), обеспечивающий передачу до 4 блоков информации за один такт. При этом сигнальное напряжение порта было понижено с 3.3 до 1.5 В. Максимальная пропускная способность AGP 4x стала около 1 GB / s . В дальнейшем развитие спецификаций носило затяжной характер - причиной тому послужила весьма низкая скорость существовавшего на тот момент парка видеоускорителей, а также низкая скорость обмена с оперативной памятью.

Как только технический прогресс "уперся" в шину, которая оказалась слишком мала для передачи огромных потоков информации современными видеокартами, был утвержден новый стандарт - AGP 8x (спецификация AGP 3.0). Как вы уже догадались, он может передавать до 8 блоков информации за один такт и обладает пиковой пропускной способностью 2 GB / s . Шина AGP 8x имеет обратную совместимость с AGP 4x.

Отрасль высоких технологий всегда идет стремительно ввысь. Наращиваются объемы передаваемых и пропускаемых данных, растут текстуры и их качество, все это непременно заставляет каждого из производителей устраивать себе встряску и выдавать "на-гора" что-нибудь новенькое и высокотехнологичное (стандарт, спецификации, протокол, интерфейс), который свяжет с собой новый виток в сфере hi - tech .

Официально первая базовая спецификация PCI Express появилась в июле 2002 года, тем самым был ознаменован день постепенного "ухода из жизни" AGP 8x…

Введение

На данный момент современный набор логики Intel P45/X48 имеет официальную поддержку спецификаций PCI Express 2.0, чем не мог похвастаться весьма распространенный Intel P35. Для тех, кто еще только собирается приобрести современную плату на платформе Intel, выбор остается вполне очевидным - чипсет P45/X48, и у вас не возникнет дилеммы "хватит или не хватит" PCI Express 1.1 для нынешней hi-end или middle-end видеокарты. А как же быть владельцам P35-ых? Стоит ли снова бежать в магазин?


В нашем сегодняшнем материале мы попытаемся расставить все точки над "I" касательно преимуществ PCI-E 2.0 над PCI-E 1.1 для современных ускорителей. Также экспериментальным путем мы проанализируем производительность видеокарт при работе с различными интерфейсами, на основе чего и будет сделан вывод о практической ценности PCI-E 2.0.

И перед тем, как приступить к каким-либо объективным тестам, давайте немного углубимся в теорию, а именно разберемся, как вообще это все работает.

PCI - Express - коротко о главном

Как уже упоминалось выше, базовая спецификация PCI Express появилась в июле 2002 года. Благодаря высокой скорости и пиковой производительности шина PCI Express не оставляет шансов своему предшественнику AGP. По своей программной модели новый интерфейс PCI-E во многом аналогичен PCI, что позволяет легко адаптировать нынешний парк всевозможных устройств к новому интерфейсу без значительных софтверных "подгонок".


Принцип работы PCI Express основан на последовательной передаче данных. Шина представляет собой пакетную сеть с топологией типа "звезда". При взаимодействии PCI-E устройств используется двунаправленное соединение типа "точка-точка", получившее название "Line" (линия). Каждое соединение PCI Express может состоять из одной (1х) или множества линий (4х, 16х и т.д).


Для базовой конфигурации PCI-Express 1х теоретическая пропускная способность составляет 250 MB/s в каждом направлении (передача/прием). Соответственно, для PCI-E x16 это значение равно 250 MB/s х 16 = 4 GB/s.

Примечателен тот факт, что с физической стороны интерфейс позволяет, например, любой плате с интерфейсом PCI-E 1х уверенно работать не только в штатном, но и в любом другом слоте PCI Express большей пропускной способности (4х, 16х и т.д.). При этом максимальное количество задействованных линий зависит только от свойств устройства.

Во всех высокоскоростных протоколах всегда остро встает вопрос помехозащищенности. На этот счет в PCI Express используется уже давно известная схема 8/10 или избыточного трафика (8 бит данных, передаваемых по каналу, заменяются на 10 бит, таким образом, генерируется дополнительная информация, около 20% от общего "потока").

PCI Express 2.0

Стандарт был официально утвержден 15 января 2007 года. Во второй ревизии PCI Express значительно увеличилась пропускная способность одного канала - до 5 Gb/s (PCI Express 1.x - 2.5 Gb/s). Это означает, что теперь для линии x16 максимальная скорость передачи данных может достигать 8 GB/s в обоих направлениях против 4 GB/s для старого PCI Express 1.х.

Примечательным фактом является то, что PCI Express 2.0 полностью совместим с PCI Express 1.1. На деле это означает, что старые видеокарты буду спокойно работать в системных платах с новыми разъемами, и новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.

Пожалуй, на этом с теорией и основными особенностями PCI Express давайте закруглимся, пора приступать к соответствующим тестам, чем мы, собственно говоря, и займемся, правда, чуть ниже, а пока давайте детально познакомимся с участниками тестирования.

Об участниках тестирования

К сожалению, охватить больший набор графических ускорителей на момент тестирования не представлялось возможным, что в последующем мы обязательно исправим. Видеокарты класса Low-End исключены из тестов преднамеренно, так как они малопригодны для режимов с высоким разрешением (свыше 1280х1024) при максимальной детализации картинки, где как раз и могут быть выявлены преимущества PCI-E 2.0 над младшим PCI-E 1.1.




Видеокарта

Poin Of View GeForce GTX 280

POV GeForce 9600 GT 512 MB Extreme Overclock

Palit HD 4850 Sonic

Кодовое название чипа

Техпроцесс