Что такое волоконно оптическая связь. Оптические линии связи. Новые стандарты и технологии волс

В волоконно-оптических системах передачи (ВОСП) информация передается электромагнитными волнами высокой частоты, около 200 ТГц, что соответствует ближнему инфракрасному диапазону оптического спектра 1500 нм. Волноводом, переносящим информационные сигналы в ВОСП, является оптическое волокно (ОВ), которое обладает важной способностью передавать световое излучение на большие расстояния с малыми потерями. Потери в ОВ количественно характеризуются затуханием. Скорость и дальность передачи информации определяются искажением оптических сигналов из-за дисперсии и затухания. Волоконно-оптическая сеть - это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии волоконно-оптических сетей помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам:

  • - широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей Гц. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка бит/с (1Тбит/с). Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут;
  • - очень малое (по сравнению с другими средами) затухание светового сигнала в оптическом волокне. Лучшие образцы российского волокна имеют затухание 0,22 дБ/км на длине волны 1,55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1,55 мкм имеет затухание 0,154 дБ/км. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фторцирконатные оптические волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2,5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с;
  • - ОВ изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди;
  • - оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике;
  • - так как оптические волокна являются диэлектриками, следовательно, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. В оптической системе они электрически полностью изолированы друг от друга, и многие проблемы, связанные с заземлением и снятием потенциалов, которые до сих пор возникали при соединении электрических кабелей, теряют свою актуальность. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды;
  • - системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на ОВ могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии;
  • - важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить волоконно-оптический кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Но существуют также некоторые недостатки волоконно-оптических технологий:

  • - при создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет, и свет в электрические сигналы. Для соединения ОВ с приемо-передающим оборудованием используются оптические коннекторы (соединители), которые должны обладать малыми оптическими потерями и большим ресурсом на подключение-отключение. Погрешности при изготовлении таких элементов линии связи должны быть порядка доли микрона, т.е. соответствовать длине волны излучения. Поэтому производство этих компонентов оптических линий связи очень дорогостоящее;
  • - другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря, на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Состоит оптоволокно из центрального проводника света (сердцевины) - стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. В оптоволокне световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника оптоволокно подразделяется на одномодовое и многомодовое.

Рынок оптоволоконной продукции в России

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда, без малого 40 лет назад, - необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Преимущества оптоволоконного типа связи

  • Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  • Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  • Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки и т.д.) и погодных условий;
  • Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  • Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  • Долговечность ВОЛС - срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  • Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  • Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Элементы волоконно-оптической линии

  • Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  • Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных. Передатчик состоит из параллельно-последовательного преобразователя с синтезатором синхроимпульсов (который зависит от системной установки и скорости передачи информации в битах), драйвера и источника оптического сигнала. Для оптических систем передачи могут быть использованы различные оптические источники. Например, светоизлучающие диоды часто используются в дешёвых локальных сетях для связи на малое расстояние. Однако, широкая спектральная полоса пропускания и невозможность работы в длинах волны второй и третьей оптических окон, не позволяет использовать светодиод в системах телесвязи.

  • Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  • Микросхема cинхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  • Блок преобразования последовательного кода в параллельный
  • Параллельно-последовательный преобразователь
  • Лазерный формирователь

Основной его задачей является подача тока смещения и модулирующего тока для прямого модулирования лазерного диода.

  • Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Одномодовое волокно

При достаточно малом диаметре волокна и соответствующей длине волны через световод будет распространяться единственный луч. Вообще сам факт подбора диаметра сердечника под одномодовый режим распространения сигнала говорит о частности каждого отдельного варианта конструкции световода. То есть под одномодовостью следует понимать характеристики волокна относительно конкретной частоты используемой волны. Распространение лишь одного луча позволяет избавиться от межмодовой дисперсии, в связи с чем одномодовые световоды на порядки производительнее. На данный момент применяется сердечник с внешним диаметром около 8 мкм. Как и в случае с многомодовыми световодами, используется и ступенчатая, и градиентная плотность распределения материала.

Второй вариант более производительный. Одномодовая технология более тонкая, дорогая и применяется в настоящее время в телекоммуникациях. Оптическое волокно используется в волоконно-оптических линиях связи, которые превосходят электронные средства связи тем, что позволяют без потерь с высокой скоростью транслировать цифровые данные на огромные расстояния. Оптоволоконные линии могут как образовывать новую сеть, так и служить для объединения уже существующих сетей - участков магистралей оптических волокон, объединенных физически на уровне световода, либо логически - на уровне протоколов передачи данных. Скорость передачи данных по ВОЛС может измеряться сотнями гигабит в секунду. Уже сейчас дорабатывается стандарт, позволяющий передавать данные со скоростью 100 Гбит/c, а стандарт 10 Гбит Ethernet используется в современных телекоммуникационных структурах уже несколько лет.

Многомодовое волокно

В многомодовом ОВ может распространяться одновременно большое число мод – лучей, введенных в световод под разными углами. Многомодовое ОВ обладает относительно большим диаметром сердцевины (стандартные значения 50 и 62,5 мкм) и, соответственно, большой числовой апертурой. Больший диаметр сердцевины многомодового волокна упрощает ввод оптического излучения в волокно, а более мягкие требования к допустимым отклонениям для многомодового волокна позволяют уменьшить стоимость оптических приемо-передатчиков. Таким образом, многомодовое волокно преобладает в локальных и домашних сетях небольшой протяженности.

Основным недостатком многомодового ОВ является наличие межмодовой дисперсии, возникающей из-за того, что разные моды проделывают в волокне разный оптический путь. Для уменьшения влияния этого явления было разработано многомодовое волокно с градиентным показателем преломления, благодаря чему моды в волокне распространяются по параболическим траекториям, и разность их оптических путей, а, следовательно, и межмодовая дисперсия существенно меньше. Однако насколько не были бы сбалансированы градиентные многомодовые волокна, их пропускная способность не сравнится с одномодовыми технологиями.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET Стандарт SDH Скорость передачи
OC 1 - 51,84 Мб/сек
OC 3 STM 1 155,52 Мб/сек
OC 12 STM 4 622,08 Мб/сек
OC 48 STM 16 2,4883 Гб/сек
OC 192 STM 64 9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

В ВОЛС (волоконно-оптические линии связи) для передачи сигнала используются волны в оптическом диапазоне (чаще всего — в ближнем инфракрасном). Основной составляющей при этом является оптический кабель, а в сеть кроме него входят активные и пассивные компоненты для усиления, фильтрации, защиты и модификации сигнала.

Применение ВОЛС

На сегодняшний день ВОЛС (ВОЛП) постепенно вытесняют традиционную кабельную проводку, поскольку отличаются намного лучшими характеристиками, в частности, большей пропускной способностью, невосприимчивостью к воздействию окружающей среды, меньшим затуханием сигнала и др.

Основной сферой применения ВОЛС являются сети передачи информационных сигналов (вычислительные сети, видеонаблюдения, телекоммуникационные системы контроля доступа и др.).

При этом на уровне магистральных (вплоть до межконтинентальных) линий передачи сигналов оптоволокно занимает уже сейчас доминирующее положение, тогда как в подсистемах внутренних магистралей ВОЛП используется наряду с витой парой.

Характеристики типов оптического волокна


Сравнение типов оптических кабелей (для увеличения изображения — ):

Главные преимущества ВОЛС

  1. Малое затухание сигнала (порядка 0,15 дБ/км в 3-м окне прозрачности). Это даёт возможность транслировать информацию на существенно большие дистанции относительно традиционной проводки без применения усилителей. Для оптических линий усилители обычно устанавливаются через 40-120 км, что определяется классом оконечного оборудования;
  2. малый вес и габариты;
  3. высокий уровень экранированности линий от межволоконных влияний (более 100 дБ).

    Таким образом, излучение соседних линий практически не взаимодействует между собой и не оказывает взаимного влияния;

  4. высокая взрыво- и пожаробезопасность в ситуациях изменения химических или физических параметров;
  5. информационная безопасность. Через оптоволокно информация транслируется из точки в точку, причём перехватить или подслушать сигнал возможно исключительно при физическом вмешательстве в ;
  6. оптические волокна обладают высокой надёжностью и долговечностью. Оптические волокна не подвержены окислению, слабому электромагнитному воздействию и разрушению под действием влаги;
  7. высокая пропускная способность. Другие способы передачи информации отстают по этому показателю от оптической среды.

Недостатки ВОЛС

  1. низкая устойчивость стандартного волокна против радиационного излучения (есть легированные волокна, отличающиеся большой радиационной устойчивостью);
  2. большая стоимость оптического оконечного оборудования сравнительно с системами, применяемыми для традиционных линий. Хотя если сравнивать с конечной стоимостью по соотношению затраты на дистанцию и пропускную способность, то оптоволокно сегодня показывает самые лучшие результаты относительно конкурирующих систем;
  3. сложность восстановления связи в случаях обрыва линии;
  4. сложность преобразования сигнала (для интерфейсного оборудования);
  5. сложная технология изготовления волокна, а также других компонентов сети ВОЛС;
  6. хрупкость волокна. При значительных деформациях, например, изгибах, волокна могут разрушаться, подвергаться трещинообразованию и замутнению.

    Чтобы избежать повреждений волокна, требуется соблюдать рекомендации производителя, где указан среди прочего минимальный радиус изгиба.

Слайд Связь

Связь в технике - передача информации (сигналов) на расстояние.

Типы связи

В зависимости от того, какие явления использовались для кодирования сообщений, можно выделять связь при помощи:

  • электронов - электросвязь (проводная и радиосвязь)
  • излучения фотонов - современное оптоволокно, некоторые виды сигнальных вышек, сигналы фонариком на азбуке Морзе, атмосферная и космическая лазерная связь
  • последовательностей символов из красителей на материале - письмо на бумаге.
  • рельефа или изменения формы материала - оптический диск

В зависимости от среды передачи данных линии связи разделяются на:

  • спутниковые
  • воздушные
  • наземные
  • подводные
  • подземные

В зависимости от того, что переносит сообщение, по физическим принципам, лежащим в основе линий связи, можно выделить следующие типы связи:

  • Проводная и кабельная связь - передача ведётся вдоль направляющей среды.
    • Спутниковая связь - связь с применением космического ретранслятора(ов)
    • Радиорелейная связь - связь с применением наземного ретранслятора(ов)
    • базовых станций
  • Курьерская связь

В зависимости от того, подвижны источники/получатели информации или нет, различают стационарную (фиксированную ) и подвижную связь (мобильную , связь с подвижными объектами - СПО).



По типу передаваемого сигнала различают аналоговую и цифровую связь.

Сигнал

В зависимости от того, какая информация передаётся, различают аналоговую и цифровую связь. Аналоговая связь - это передача непрерывных сообщений (например, звука или речи). Цифровая связь - это передача информации в дискретной форме (цифровом виде). Однако, дискретные сообщения могут передаваться аналоговыми каналами и наоборот. В настоящее время цифровая связь вытесняет аналоговую (происходит цифровизация),

Линия связи

Линия связи (ЛС)- физическая среда, по которой передаются информационные сигналы аппаратуры передачи данных и промежуточной аппаратуры.

Это и совокупность технических устройств, обеспечивающих передачу сообщений любого вида от отправителя к получателю. Она осуществляется с помощью электрических сигналов, распространяющихся по проводам, или радиосигналов.

Проводные линии связи

Цепь связи - проводники/волокно используемые для передачи одного сигнала. В радиосвязи то же понятие имеет название ствол . Различают кабельную цепь - цепь в кабеле и воздушную цепь - подвешена на опорах.

Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные. Кабельные линии прокладывались под землей. Однако вследствие несовершенства конструкции подземные кабельные линии связи уступили место воздушным. Обычный городской телефонный кабель состоит из пучка тонких медных или алюминиевых проводов, изолированных друг от друга и заключенных в общую оболочку. Кабели состоят из разного числа пар проводов, каждая из которых используется для передачи телефонных сигналов. Стремление расширить спектр передаваемых частот и увеличить пропускную способность линий многоканальных систем привело к созданию новых типов кабелей, так называемых коаксиальных . Они используются для передачи телевизионных сигналов высокой частоты, а также для междугородней и международной телефонной связи. Одним проводом в коаксиальном кабеле служит медная или алюминиевая трубка (или оплетка), а другим - вложенная в нее центральная медная жила. Они изолированы друг от друга и имеют одну общую ось. Такой кабель имеет малые потери, почти не излучает электромагнитных волн и поэтому не создает помех. Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния.

Рис. Коаксиальный кабель

Оптоволоконные линии связи

В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

Оптоволоконные линии отличают от традиционных проводных линий:

  • очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);
  • защищенность передаваемой информации от несанкционированного доступа;
  • высокая устойчивость к электромагнитным помехам;
  • стойкость к агрессивным средам;
  • возможность передавать по одному волокну одновременно до 10 миллионов телефонных разговоров и одного миллиона видеосигналов;
  • гибкость волокон;
  • малые размеры и масса;
  • искро-, взрыво- и пожаробезопасность;
  • простота монтажа и укладки;
  • низкая себестоимость;
  • высокая долговечность оптических волокон - до 25 лет.

Рис. Оптоволоконный кабель (поперечный разрез)

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Рис. Оптоволоконная сеть "Транстелеком"

Канал связи может быть:

  • симплексный - то есть допускающей передачу данных только в одном направлении, пример - радиотрансляция, телевидение;
  • полудуплексный поочерёдно ;
  • дуплексным - то есть допускающей передачу данных в обоих направлениях одновременно , пример - телефон.

Разделение (уплотнение) каналов:

Создание нескольких каналов на одной линии связи обеспечивается с помощью разнесения их по частоте, времени, кодам, адресу, длине волны.

  • частотное разделение каналов (ЧРК, FDM) - разделение каналов по частоте, каждому каналу выделяется определённый диапазон частот
  • временное разделение каналов (ВРК, TDM) - разделение каналов во времени, каждому каналу выделяется квант времени (таймслот)
  • кодовое разделение каналов (КРК, CDMA) - разделение каналов по кодам, каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.
  • спектральное разделение каналов (СРК, WDM) - разделение каналов по длине волны

Беспроводные линии связи

Радиосвязь - для передачи используются радиоволны в пространстве.

    • ДВ-, СВ-, КВ- и УКВ-связь без применения ретрансляторов
    • Спутниковая связь - связь с применением космических ретрансляторов
    • Радиорелейная связь - связь с применением наземных ретрансляторов
    • Сотовая связь - связь с использованием сети наземных базовых станций

Система связи состоит из оконечного оборудования , источника и получателя сообщения, и устройств преобразования сигнала (УПС) с обеих концов линии. Оконечное оборудование обеспечивает первичную обработку сообщения и сигнала, преобразование сообщений из вида в котором их предоставляет источник (речь, изображение и т. п.) в сигнал (на стороне источника, отправителя) и обратно (на стороне получателя), усиление и т. п. УПС может обеспечивает защиту сигнала от искажений.

Виды современной связи

Почта

Почта (русск. Почта (info) ; от лат. posta ) - вид связи и учреждение для транспортировки известий (например, писем и открыток) и мелких товаров, иногда и людей. Осуществляет регулярную пересылку почтовых отправлений - письменной корреспонденции, периодических изданий, денежных переводов, бандеролей, посылок - преимущественно при помощи транспортных средств.

Почтовая организация в России традиционно является государственным предприятием. Сеть почтовых отделений - крупнейшая организационная сеть в стране.

Письмо - средство сохранения информации, например на бумаге. Перед отправкой письма на конверте нужно нанести почтовые индексы отправителя и получателя в соответствии с нанесенным на нем трафаретом.

Рис. Почтовый конверт с трафаретом почтового индекса

Рис. Почтовый конверт РФ с нанесенным почтовым индексом

Авиапо́чта , или авиацио́нная по́чта (англ. airmail ), - вид почтовой связи, при котором почтовые отправления транспортируются воздушным путём с помощью авиации.

Рис. Конверт авиапочты Российской федерации

Голуби́ная по́чта - один из способов почтовой связи, при котором доставка письменных сообщений производится с помощью почтовых голубей.

Киберпочт@

Главное преимущество электронной почты – скорость доставки независимо от географического положения отправителя письма и получателя. Но и отправитель, и получатель для этого должны иметь компьютеры и доступ к электронной почте.

А если у отправителя эти возможности есть, а у получателя нет? В США государственная почтовая служба обеспечивает доставку электронного письма до ближайшего к адресату отделения связи. Там оно распечатывается и в конверте доставляется почтальоном получателю. Сегодня авиапочта доставляет обычное письмо из России в США за 3-4 недели. Новое комбинированное (электронное – обычное) письмо может быть доставлено за 48 часов. В России также существует план оснащения почтовых отделений доступом к Интернету и электронной почте. Этот проект носит название «Киберпочт@». Во всех почтовых отделениях будут открыты «интернет-салоны» – пункты коллективного доступа в Интернет. В таком салоне можно будет отправить электронное письмо, содержащее любой текст, документ, рисунок, фотографию. Это письмо будет отправлено в ближайшее к получателю почтовое отделение, распечатано, автоматически запечатано в конверт и доставлено почтальоном по любому адресу в течение 48 часов. В интернет-салоне консультант поможет вам научиться пользоваться электронной почтой и сделает цифровую фотографию. Первый такой интернет-салон уже существует на московском почтамте. Стоимость одной страницы такого комбинированного письма – 12 рублей, а на дискете – 6 рублей за 2 Кбайта.

Частью проекта «Киберпочт@» является так называемая «Гибридная почта». Это гибрид современного Интернета и «традиционного почтальона». Теперь любой человек может принести в почтовое отделение обыкновенное, написанное на бумаге письмо. Там его введут в компьютер и передадут по электронной почте в ближайшее к адресату почтовое отделение. В нем это письмо распечатают на принтере, и почтальон отнесет его адресату. Тогда письмо дойдет в любой город страны не позднее, чем через 48 часов, так как из процесса доставки исчезает самый долгий этап – перевозка письма, написанного на бумаге из города в город. Так письмо по скорости доставки сравняется с телеграммой. Но стоимость такого письма во много раз меньше, чем телеграммы. Ведь стоимость только одного слова телеграммы при передаче по России составляет 80 коп., а стоимость одной страницы гибридного письма формата А4 и числом знаков 2000 составляет всего 12 руб. При этом на странице формата А4 помещается несколько сотен слов!

Письмо может быть закрытым, т.е. получателю письмо доставляется в конверте, или открытым, т.е. письмо доставляется без конверта.
Можно сдавать письма по Гибридной почте, как на бумаге, так и на магнитном носителе.

Позднее к проекту «Гибридная почта» присоединили дополнение и для пользователей, владеющих Интернетом и электронной почтой. Оно позволяет им отправить электронное письмо адресату, не владеющему электронной почтой. Это письмо попадает в ближайшее к адресату почтовое отделение, в нем распечатывается и запечатывается в конверт. Этот конверт почтальон относит адресату - получателю письма. Этим существенно сокращается время его доставки.

Пневмати́ческая по́чта , или пневмопо́чта (от греч. πνευματικός - воздушный) , - система перемещения штучных грузов под действием сжатого или, наоборот, разрежённого воздуха. Закрытые пассивные капсулы (контейнеры) перемещаются по системе трубопроводов, перенося внутри себя нетяжёлые грузы, документы.

Рис. Терминал пневмопочты

Используется в организациях для пересылки оригиналов документов, например, в банках, складах и библиотеках, наличных денег в супермаркетах и кассах банков, анализов, историй болезней, рентгеновских снимков в лечебных учреждениях, а так же проб и образцов на промышленных предприятиях.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи. В России телеграфная связь существует и поныне. В некоторых странах сочли телеграф устаревшим видом связи и свернули все операции по отправлению и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 году. В январе 2006 года старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставлению телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все ещё поддерживают сервис по отправлению и доставке традиционных телеграфных сообщений.

Телегра́ф (от др.-греч. τῆλε - «далеко» + γρᾰ́φω - «пишу») - средство для передачи сигнала по проводам или другим каналам электросвязи.

Телегра́мма - сообщение, посланное по телеграфу, одному из первых видов связи, использующему электрическую передачу информации.

Рис. Телеграмма

Телефонная связь

Телефо́н (от греч. τῆλε - далеко и φωνή - голос) - устройство для передачи и приёма звука на расстояние посредством электрических сигналов.Телефонная связь применяется для передачи и приема человеческой речи.

Волоконно-оптическая линия связи (ВОЛС) - линия связывающая две электрические цепи путем перенесения информации с использованием светового сигнала внутри оптического волокна (тонкой стеклянной или пластиковой нити) Принцип работы оптического волокна основан на эффекте полного внутреннего отражения. Входной сигнал модулирует источник светового излучения, а для обратного преобразования света в электрический сигнал используют фотоприемники. Таким образом ВОЛС включает следующие основные компоненты:

1) передатчик;

2) кабель на базе оптического волокна;

3) приемник;

4) соединители (коннекторы).

Для более сложных линий и коммуникационных сетей используются дополнительные элементы, такие как разветвители, мультиплексоры и распределительные устройства.

Передатчик

В качестве передатчиков используют светодиоды и полупроводниковые лазеры.

Для передачи информации в основном применяют излучения с длинами волн: 1550 нм, 1300 нм, 850 нм, чтобы обеспечить минимальное затухание в оптических волокнах.

Светодиоды могут излучать свет с длинной волны 850 нм и 1300 нм. Излучатели с длиной волны 850 нм существенно дешевле, чем излучатели с длиной волны 1300 нм. При этом полоса пропускания кабеля для волн 850 нм уже (200 МГц/км вместо 500 МГц/км). Принцип действия, характеристики и конструкцию светодиодов см. лекцию №7.

Лазерные излучатели работают на длинах волн 1300 нм и 1500 нм. Быстродействие современных лазеров позволяет модулировать световой поток с частотами 10 ГГц и выше. Лазерные излучатели создают когерентный поток света, за счет чего потери в оптических волокнах становятся меньше, чем при использовании некогерентного потока от светодиода. Принцип действия, характеристики и конструкцию лазеров см. лекцию №10.

Оптоволоконные кабели.

Конструкция.

Оптическое волокно состоит из центрального проводника света (ядро) и окружающей оптической оболочки, имеющей меньший показатель преломления. Распространяясь по ядру лучи света не выходят за его пределы, испытывая отражение на границе раздела ядро – оболочка. Свет, падающий на границу под углом, меньше критического, будет проникать в оптическую оболочку, и затухать по мере распространения в ней, т.к. оптическая оболочка не предназначена для переноса света. Также волокна имеют дополнительное защитное покрытие, которое предохраняет от ударов ядро и оптическую оболочку. Волокна сами по себе имеют чрезвычайно малый диаметр .

На Рис.1 представлена схема распространения света по волокну. Свет заводится внутрь волокна под углом, больше критического, к границе “ядро/оптическая оболочка”, и испытывает полное внутреннее отражение на этой границе. Поскольку углы падения и отражения совпадают, то свет и в дальнейшем будет отражаться от границы. Таким образом, луч света будет дви­гаться зигзагообразно вдоль волокна.

Характеристики оптоволоконных кабелей.

- Дисперсия – это зависимость фазовой скорости волны, распространяющейся в оптическом кабеле от частоты.

- Количество мод в волокне . Из специальных глав физики известно, что параметры оптического волокна определяют количество электромагнитных волн (мод), которые могут в нем распространяться. Для каждого волокна существует КР, такая, что все волны, имеющие< КР не будут распространяться. Изменяя КР можно добиться распространения в волокне необходимого числа волн (мод). Для распространения излучения одной длины волны (моды) необходимо выполнение условия, при котором все, кроме одной, излучаемые источником длины волн имеют> КР.

- Ширина полосы пропускания – часто ее указывают вместо дисперсии в многомодовых волокнах, выражается в мегагерцах на километр (МГц/км). Полоса пропускания в 400 МГц/км означает возможность передачи сигнала в полосе 400 МГц на расстояние 1 км, т.е. произведение максимальной частоты сигнала на длину передачи может быть меньше или равно 400. Другими словами, можно передавать сигнал более низкой частоты на большее расстояние или более высокой частоты на меньшее расстояние, как показано на Рис.1.

В

Рис.1

ыражение полосы пропускания через одномодовую дисперсию является сложным, его приблизительная оценка может быть получена на основе следующего уравнения:

, (2)

где:D isp - дисперсия на рабочей длине волны в сек на нанометр и на километр;

S W - ширина спектра источника в нм; L - длина волокна в км.

-

Рис.2

Затухание – это потеря оптической энергии по мере движения света по волокну, измеряется в децибелах на километр. Затухание зависит от длины волны света. Существуют окна прозрачности, в которых свет распространяется вдоль волокна с малым затуханием. Следовательно, при работе источника света в этих диапазонах потери при передаче в волокне будут минимальны. На Рис.2а представлена типичная кривая затухания для многомодового волокна с низкими потерями. Рис.2б представляет ту же кривую для одномодового волокна. Важнейшей особенностью затухания в оптическом волокне является его независимость от частоты модуляций внутри полосы пропускания. Затухание в волокне определяется тремя эффектами: рассеянием, поглощением и наличием м

Рис.3

икроизгибов. На Рис.3 показано, что вариации границы могут приводить к отражению мод высокого порядка под углами, не допускающими дальнейших отражений.

- Численная апертура (NA) - определяет способность волокна собирать лучи. NA зависит от свойств материалов волокна и определяется показателями преломления ядра и оптической оболочки:
. NA волокна указывает на то, как свет вводится в волокно и распространяется по нему. Волокно с большим значением NA (т.е. подразумевает большее количество возможных световых траекторий)хорошо принимает свет, в то время, как в волокно с малым значением NA (волокна с широкой полосой пропускания) можно ввести только узконаправленный пучок света.

Также можно определить величину углов, при которых свет распространяется вдоль волокна. Эти углы образуют конус, называемый входным конусом , угловой растр которого определяет максимальный угол ввода света в волокно.

(3)

Рис.4

где - половина угла ввода (Рис.4).

Источник и приемник также имеют свои апертуры:

NA ист источника определяет угловую апертуру входного света.

NA дет детектора определяет рабочий диапазон углов для приемника.

Очень важно выполнить условие: NA ист = NA дет . Рассогласование NA приводит к дополнительным потерям при передаче света от устройства с меньшим значением NA к устройству с большим значением.

- Прочность волокна - характеризует способность волокна противостоять натяжению, разрыву и изгибу без повреждения. Основная причина, обусловливающая хрупкость волокна, - наличие микротрещин на поверхности и дефектов внутри волокна. Поверхностные дефекты могут возрастать под воздействием растягивающей нагрузки, возникающей во время прокладки кабеля. Температурные изменения, механические и химические воздействия, обычное старение также приводят к появлению дефектов. Стеклянные волокна можно согнуть в виде окружности небольшого диаметра. При этом необходимо помнить, что минимальный радиус кривизны равен пяти диаметрам кабеля при отсутствии растягивающих напряжений и 10 диаметрам кабеля при их наличии.

- Радиационная прочность – определяет способность оборудования противостоять ядерным эффектам. Волокна в отличие от проводников не накапливают статические заряды под воздействием радиации. Волокна также не повреждаются мгновенно после расплавления их кабельной оболочки под тепловым воздействием радиационного источника.

Волокна противостоят росту затухания в условиях постоянного радиоактивного облучения высокой интенсивности. Рост затухания зависит от величины накопленной дозы и интенсивности облучения.