Принцип работы транзистора онлайн. Преимущества и недостатки замены ламп транзисторами. Усиление электрических сигналов

В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода . Поэтому транзистор можно представить в виде двух встречно включенных диода . В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.


База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси .

Базу делают как можно более тонкой . Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.


В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном . Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.


Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции .

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током .

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока .

Токи в транзисторе можно представить следующим образом

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Название «транзистор» произошло от слияния двух английских слов: transfer - переносимый, и resistor - сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением - полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, - потенциалом на затворе, а для биполярных транзисторов - потенциалом на базе или током базы.

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным - большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

  • p-n-p ;
  • n-p-n.

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки - положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор - это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база - это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) - стрелка внутрь, а NPN (обратная проводимость) - стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости - канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Транзистор - это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор - это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора - это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

Что означает название "транзистор"

Транзистор не сразу получил такое привычное название. Первоначально, по аналогии с ламповой техникой его называли полупроводниковым триодом . Современное название состоит из двух слов. Первое слово - «трансфер», (тут сразу вспоминается «трансформатор») означает передатчик, преобразователь, переносчик. А вторая половина слова напоминает слово «резистор», - деталь электрических схем, основное свойство которой электрическое сопротивление.

Именно это сопротивление встречается в законе Ома и многих других формулах электротехники. Поэтому слово «транзистор» можно растолковать, как преобразователь сопротивления. Примерно так же, как в гидравлике изменение потока жидкости регулируется задвижкой. У транзистора такая «задвижка» изменяет количество электрических зарядов, создающих электрический ток. Это изменение есть не что иное, как изменение внутреннего сопротивления полупроводникового прибора.

Усиление электрических сигналов

Наиболее распространенной операцией, которую выполняют транзисторы , является усиление электрических сигналов . Но это не совсем верное выражение, ведь слабый сигнал с микрофона таковым и остается.

Усиление также требуется в радиоприеме и телевидении: слабый сигнал с антенны мощностью в миллиардные доли ватта необходимо усилить до такой степени, чтобы получить звук или изображение на экране. А это уже мощности в несколько десятков, а в некоторых случаях и сотен ватт. Поэтому процесс усиления сводится к тому, чтобы с помощью дополнительных источников энергии, полученной от блока питания, получить мощную копию слабого входного сигнала. Другими словами маломощное входное воздействие управляет мощными потоками энергии.

Усиление в других областях техники и природе

Такие примеры можно найти не только в электрических схемах. Например, при нажатии педали газа увеличивается скорость автомобиля. При этом на педаль газа нажимать приходится не очень сильно - по сравнению с мощностью двигателя мощность нажатия на педаль ничтожна. Для уменьшения скорости педаль придется несколько отпустить, ослабить входное воздействие. В этой ситуации мощным источником энергии является бензин.

Такое же воздействие можно наблюдать и в гидравлике: на открытие электромагнитного клапана, например в станке, энергии, идет совсем немного. А давление масла на поршень механизма способно создать усилие в несколько тонн. Это усилие можно регулировать, если в маслопроводе предусмотреть регулируемую задвижку, как в обычном кухонном кране. Чуть прикрыл - давление упало, усилие снизилось. Если открыл побольше, то и нажим усилился.

На поворот задвижки тоже не требуется прилагать особых усилий. В данном случае внешним источником энергии является насосная станция станка. И подобных воздействий в природе и технике можно заметить великое множество. Но все-таки нас больше интересует транзистор, поэтому далее придется рассмотреть…

Усилители электрических сигналов

Когда-то транзистором называли радиоприемник, но речь в нашей статье пойдет не о радиоприемнике. Так что же это такое транзистор и как он работает.

Есть такой класс материалов, за свои свойства названный полупроводниками. Отличительной их особенностью является проводимость - они могут быть как проводниками электрического тока, так и диэлектриками, т.е. изоляторами и не проводить электрический ток.

Вот такой материал используется для изготовления транзистора - широко применяющегося в промышленности и служащего основой почти всей современной электроники.

Не касаясь технологии изготовления, типов транзисторов, их применения, просто отметим, что существуют транзисторы разных типов, например, npn транзистор. Такое название он получил из-за используемого материала и типа проводимости. Того, что сказано, пока достаточно и углубляться в технологию изготовления и разнообразие транзисторов сейчас не будем.

Как работает транзистор? Он предназначен для управления электрическим током, конструктивно изготавливается в металлическом или пластмассовом корпусе и имеет три вывода, называемые эмиттер, база, коллектор. Уже название выводов говорит об их назначении: эмиттер эмитирует электроны, база ими управляет, коллектор их собирает. Все эти процессы происходят внутри транзистора.

Чтобы понять, как работает транзистор, рассмотрим гораздо более простой пример - водопроводный кран.

У него тоже три вывода - по одному вода поступает в кран, по другому выливается из крана, третьим является вентиль, который управляет работой крана. Когда вентиль открыт, вода свободно протекает через кран, когда вентиль закрыт, вода не течет. Это имитация одного из вариантов того, как работает транзистор. Такой режим работы называется ключевой - транзистор открыт - протекает или закрыт, тогда ток не идет. Для открытия транзистора на базу подается напряжение, если напряжение есть, то транзистор открыт, если нет, то он закрыт. Все происходит, как в открыт - вода течет, вентиль закрыт - воды нет.

Выше была рассмотрена работа транзистора, когда он используется как ключ: либо закрыт, либо открыт. Однако существуют и другие режимы работы. Вновь в качестве примера рассмотрим водопроводный кран. Если немного приоткрыть вентиль, то вода из крана будет литься постоянно, и напор воды будет определяться тем, насколько сильно мы открыли кран.

Примерно такой же режим работы есть и у транзистора. На его базу поступает напряжение, он открывается, и через него идет ток. Меняя величину напряжения на базе, можно регулировать величину тока, проходящего через транзистор. Полная аналогия с положением вентиля на кране: больше открыт - больше льется воды (т.е. тока для транзистора); меньше открыт - меньше течет воды (тока для транзистора). Такой режим работы транзистора называется усилительным, когда при помощи небольшого напряжения, подаваемого на базу, можно управлять значительным током, снимаемым с коллектора.

В заключение надо отметить, что транзисторы могут быть разного типа, все определяется используемым при изготовлении материалом. Они могут отличаться по мощности, могут управлять и пропускать через себя значительные потоки электрического тока. Транзисторы могут быть разного конструктивного исполнения. Существуют и другие режимы работы транзисторов, отличающиеся от рассмотренных. Но основное представление о том, как работает транзистор, дано выше.

Все изложенное приблизительно, но все же позволяет понять работу транзистора. На самом деле работа транзистора происходит гораздо сложнее. Есть специальные параметры, используя которые можно по формулам рассчитать и задать необходимый режим работы, но это уже совсем иная тема для разговора и для другой статьи.

Так работает диод

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Погляди в схему программатора (там где был пример с делителем). Видишь стоят диоды, как думаешь, зачем? А все просто. У микроконтроллера логические уровни это 0 и 5 вольт, а у СОМ порта единица это минус 12 вольт, а ноль плюс 12 вольт. Вот диод и отрезает этот минус 12, образуя 0 вольт. А поскольку у диода в прямом направлении проводимость не идеальная (она вообще зависит от приложенного прямого напряжения, чем оно больше, тем лучше диод проводит ток), то на его сопротивлении упадет примерно 0.5-0.7 вольта, остаток, будучи поделенным резисторами надвое, окажется примерно 5.5 вольт, что не выходит за пределы нормы контроллера.
Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны к атода как бы рисуют букву К вот, смотри —К |—. К= Катод! А на детали катод обозначается полоской или точкой.

Есть еще один интересный тип диода – стабилитрон . Его я юзал в одной из прошлых статей. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный. Используется для защиты по питанию.

Транзистор.

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.
В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления .
Делятся эти девайсы на полевые и биполярные.
В биполярном транзисторе есть эмиттер , коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором. Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере . А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, . Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.