Процессоры duo core 2 tm. Процессоры

ВведениеЕщё совсем недавно нам казалось, что в начале 2008 года основной "горячей" темой наших публикаций станет сравнение новых процессоров AMD Phenom с обновлёнными четырёхъядерными процессорами Intel Penryn, производимыми с использованием 45-нм технологического процесса. Однако этим ожиданиям оправдаться не суждено, причём вина в этом лежит и на AMD, и на Intel. Действительно, к настоящему времени компания AMD так и не смогла предложить серийные четырёхъядерные процессоры, работающие на достойных частотах. Предлагаемые же модели Phenom показывают провальные результаты даже в сравнении с четырёхъядерными CPU Intel предыдущего поколения, не говоря уже о более совершенных новых процессорах. Вполне логично, что в свете обнаружившегося отсутствия достойных конкурентов для вполне успешно продающихся процессоров Core 2 Quad на старых 65-нм ядрах, компания Intel утратила стимулы для скорейшего обновления своей линейки четырёхъядерных процессоров. Поэтому выход новых CPU в линейке Core 2 Quad, известных сегодня под кодовым именем Yorkfield, отложен на неопределённый срок: как минимум, до февраля или марта. И хотя Intel при этом прикрывается сообщением о найденной в перспективных процессорах проблеме, вызванной наводками в 1333-мегагерцовой фронтальной шине, возникающими при их использовании в гипотетических платах с четырёхслойным дизайном PCB, выглядит оно совершенно неубедительно. Мы же вынуждены констатировать печальный итог: сравнивать Phenom и Penryn стало совершенно бессмысленно, потому что первый – неконкурентоспособен, а второй – пока что иллюзорен и не намерен лишаться неопределённого статуса перспективного продукта.

Но, всё же, темы, достойные нашего внимания, можно найти и на сегодняшнем процессорном рынке. Несмотря на то, что компания Intel решила повременить с выпуском четырёхъядерных процессоров, основанных на 45-нм ядрах, линейка двухъядерных CPU Core2 Duo всё-таки будет обновлена. В ближайшие дни должны быть анонсированы три новых процессора, принадлежащие к этому модельному ряду и имеющие кодовое имя Wolfdale: Core 2 Duo E8500, E8400 и E8200. Эти процессоры базируются на переработанном ядре, производимом по 45-нм техпроцессу, и относятся к тому же семейству Penryn, к которому принадлежат и отложенные Yorkfield. Появление серийных Wolfdale обойти вниманием никак нельзя: эти процессоры обещают поднять производительность двухъядерных предложений Intel на новый уровень, ведь они имеют и более высокие таковые частоты, и больший кэш второго уровня, а также и прочие усовершенствования. При этом, что особенно приятно, их стоимость установлена на том же уровне, что и на старые Core 2 Duo.


Таким образом, на вторую половину января Intel запланировал массирование обновление собственных двухъядерных предложений в ценовом диапазоне от 160 до 260 долларов. Именно это событие и стало основной темой для нашей новой статьи, в которой мы познакомим вас с тем, чего же следует в реальности ожидать от столь многообещающих новинок, нацеленных на использование в настольных компьютерах среднего уровня.

Процессоры линейки Wolfdale: Core 2 Duo E8500, E8400 и E8200

Итак, Wolfdale – это кодовое имя двухъядерных процессоров в семействе Penryn. Как и отложенные четырёхъядерные Yorkfield, процессоры Wolfdale производятся по 45-нм технологическому процессу. Причём, в основе Yorkfield и Wolfdale используются совершенно одинаковые полупроводниковые кристаллы: Yorkfield, по сложившейся традиции, представляет собой склейку из двух двухъядерных кристаллов Wolfdale, выполненную в одном процессорном корпусе. Таким образом, Wolfdale можно рассматривать как базовый строительный материал для формирования всего семейства Penryn, чем он отдельно интересен.

Ядро процессоров Wolfdale имеет площадь 107 кв. мм и состоит из 410 миллионов транзисторов. Эти цифры недвусмысленно наводят на мысль о том, что в Wolfdale по сравнению с 65 нм предшественником Conroe, который содержал 291 миллион транзисторов, сделаны весьма существенные изменения. Собственно, видно это и по фотографии ядер Wolfdale и Conroe: компоновка функциональных блоков несколько изменилась.


Слева – Wolfdale, справа – Conroe (масштаб изображений не сохранён)


Таким образом, ядро Wolfdale – это не просто уменьшенное в связи с переходом на более совершенный техпроцесс ядро Conroe. В новых процессорах инженеры Intel сделали целый ряд усовершенствований (подробнее об особенностях процессоров семейства Penryn можно прочитать в нашем материале "").

Анонсируемая в эти дни линейка двухъядерных процессоров Wolfdale, базирующаяся на новых 45-нм ядрах, изначально будет включать три модели процессоров Core 2 Duo: E8500, E8400 и E8200 с тактовыми частотами 3,16, 3,0 и 2,66 ГГц соответственно. Кроме того, будет доступна и модель с номером E8190, аналогичная Core 2 Duo E8200, но при этом лишённая технологии виртуализации. Позднее к ним присоединится и ещё один, пятый, процессор Core 2 Duo E8300 с частотой 2,83 ГГц, но случится это не ранее второго квартала текущего года.

Полное представление о серийных Core 2 Duo с 45-нм ядрами можно получить из приведённой таблицы.


К указанной в таблице технической информации необходимо приобщить и не менее важную информацию об отпускных ценах производителя на новые CPU:

Core 2 Duo E8500 – 266 долл.
Core 2 Duo E8400 – 183 долл.
Core 2 Duo E8200 – 163 долл.
Core 2 Duo E8190 – 163 долл.

Приятно видеть, что Intel продолжает придерживаться одобряемой пользователями ценовой политики, когда новые процессоры продаются по той же самой стоимости, что и старые, эволюционно вытесняя их с рынка. На этот раз Core 2 Duo E8500 приходит на смену Core 2 Duo E6850, Core 2 Duo E8400 сменяет на своём посту Core 2 Duo E6770, а Core 2 Duo E6550 уступает место для Core 2 Duo E8200. Иными словами, начиная уже с ближайших дней, покупатели двухъядерных CPU получат возможность приобрести более совершенные и высокочастотные процессоры по старой цене.

Давайте взглянем на сами процессоры с кодовым именем Wolfdale.




Как видно по фотографии, новые процессоры с 45-нм ядрами имеют практически такой же внешний вид, что и их 65 нм предшественники.



Слева – Wolfdale, справа – Conroe


Тем не менее, расположение навесных элементов на брюшке двухъядерных CPU разных поколений отличается.

Диагностическая утилита CPU-Z уже хорошо знакома с новыми процессорами. Проблем с правильным определением Core 2 Duo E8500, E8400 и E8200 не возникает никаких.


Заметьте, наши тестовые образцы новых процессоров основываются на ядрах далеко не первой ревизии C0, и в серийные модели пойдёт именно она.

К имеющейся на скриншоте информации остаётся добавить лишь единственный комментарий. Процессоры Wolfdale получили поддержку дробных коэффициентов умножения, что даёт Intel возможность сделать сетку тактовых частот гуще. Именно это мы и видим на примере Core 2 Duo E8500 – данный процессор имеет множитель 9,5. Следует заметить, что для нормального функционирования такого CPU требуется поддержка дробных множителей со стороны BIOS материнской платы. Впрочем, в ближайшее время соответствующие обновления должны выпустить все ведущие производители материнских плат.

Как мы тестировали

Для изучения производительности новых процессоров Core 2 Duo E8500, E8400 и E8200 и их сравнения с предшествующими и конкурирующими моделями нами было собрано несколько систем, включающих следующий набор оборудования.

Платформа AMD:

Процессор: AMD Athlon 64 X2 6400+ (Socket AM2, 3,0 ГГц, 2x1024 кбайт L2, ядро Windsor).
Материнская плата: ASUS M2R32-MVP (Socket AM2, чипсет AMD 580X).
Память: ).
Графическая карта:
Дисковая подсистема:
Операционная система:

Платформа Intel:

Процессоры:

Intel Core 2 Duo E8500 (LGA775, 3,16 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8400 (LGA775, 3,0 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8200 (LGA775, 2,66 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E6850 (LGA775, 3,0 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe);
Intel Core 2 Duo E6750 (LGA775, 2,66 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe).


Материнская плата: ASUS P5E (LGA775, Intel X38, DDR2 SDRAM).
Память: 2 Гбайта DDR2-800 с таймингами 4-4-4-12-1T (Corsair Dominator TWIN2X2048-10000C5DF ).
Графическая карта: OCZ GeForce 8800GTX (PCI-E x16).
Дисковая подсистема: Western Digital WD1500AHFD (SATA150).
Операционная система: Microsoft Windows Vista x86.

Особо отметим, что использовавшаяся нами для тестирования процессоров Wolfdale материнская плата ASUS P5E c BIOS версии 0502 поддерживает их в полной мере, позволяя изменять множитель этих CPU с шагом 0,5.

Производительность

Общее быстродействие

Выбранный нами тест SYSmark 2007 использует для определения производительности типичные сценарии работы в наиболее распространённых реальных приложениях.















SYSMark 2007 в среднем выявляет примерно 4-процентное преимущество процессоров Wolfdale над Conroe, работающими на аналогичных тактовых частотах. Однако за счёт того, что Intel в обновлённой линейке CPU увеличил частоту своих процессоров, старшая модель Wolfdale опережает старшую модель Conroe на 7 %. Стоимость же этих процессоров разных поколений по официальному прайс-листу Intel одинакова.

Анализ промежуточных результатов SYSMark 2007 показывает, что наибольший прирост быстродействия новые процессоры обеспечивают в сценарии, в котором моделируется подготовка обучающего веб-сайта, содержащего разнообразный медиа-контент. Этот сценарий задействует следующие приложения: Adobe Illustrator CS2, Adobe Photoshop CS2, Macromedia Flash 8 и Microsoft PowerPoint 2003. Наименьшая разница в производительности между Core 2 Duo на 45-нм и 65-нм ядрах наблюдается при изготовлении и обработке видеороликов, в процессе чего задействуются Adobe After Effects 7, Adobe Illustrator CS2, Adobe Photoshop CS2, Microsoft Windows Media Encoder 9 и Sony Vegas 7.

3D игры





















Игроки должны воспринять появление новых процессоров серии Core 2 Duo E8000 с большим воодушевлением. Как известно, скорость работы игровых приложений хорошо реагирует на изменение размера кэш-памяти, что и отмечается в данном случае. В некоторых играх младшему из Wolfdale, Core 2 Duo E8200, удаётся даже опередить по скорости бывшую топовую двухъядерную модель E6850 на 65-нм ядре. Старший же двухъядерный процессор AMD, Athlon 64 X2 6400+, который и раньше-то смотрелся в играх не лучшим образом, теперь вообще оказывается в глубоком нокауте. Он значительно проигрывает по быстродействию даже младшему представителю линейки Wolfdale.

Кодирование медиаконтента












Положение дел вполне ожидаемо: превосходство семейства Core 2 Duo E8000 над предшественниками в лице Core 2 Duo E6000 находится примерно на том же уровне, что и в других тестах. Хотя в скором времени эта картина может измениться в корне: кодеки относятся к числу приложений, которые должны получить значительный выигрыш от оптимизации под набор инструкций SSE4, появившийся в линейке процессоров E8000. Так что пока какие-то окончательные выводы о работе Wolfdale в этой группе задач делать преждевременно.

Финальный рендеринг






В целом, наблюдаемая картина смотрится вполне "в духе" предыдущих результатов. Хорошо распараллеливаемые алгоритмы рендеринга выигрывают от перехода на новое ядро. Здесь же хочется обратить внимание на один любопытный факт, не нашедший отражения на графиках. Дело в том, что хотя это и кажется несколько фантастичным, производительность двухъядерного процессора Core 2 Duo E8500 при финальном рендеринге почти доросла до уровня быстродействия младшего из четырёхъядерных процессоров AMD, Phenom 9500. По данным наших тестов этот процессор AMD в 3ds max 9 набирает 5,61 балла, а в Cinebench R10 – 7114 очков.

Другие приложения












Для этого раздела мы выбрали ещё четыре интересных распространённых задачи, которые тематически не подходят ни к одной из предыдущих частей изложения. Впрочем, и здесь ничего принципиально нового на диаграммах нет: Core 2 Duo E8500, E8400 и E8200 однозначно превосходят модели с 65-нм ядрами с равной частотой, и уж тем более, с равной стоимостью.

Энергопотребление и тепловыделение

Поскольку новый 45-нм технологический процесс должен найти отражение в электрических и тепловых характеристиках новых CPU, мы решили уделить внимание практическим тестам и этих показателей.

В первую очередь мы прибегли к измерению рабочей температуры процессоров при простое и под нагрузкой. Во время тестирования процессоры охлаждались одним и тем же кулером Zalman CNPS9700 LED . Энергосберегающие технологии Enhanced Intel SpeedStep и Cool"n"Quiet 2.0 были включены. Кстати, процессоры Wolfdale, точно также как и их предшественники, в состояниях с низкой загрузкой сбрасывают свой коэффициент умножения до 6x.

Загрузка процессоров выполнялась при помощи утилиты Prime95 25.5, температурные показатели снимались утилитой CoreTemp 0.96. Полученные результаты приведены в таблице.


Как того и следовало ожидать, в целом процессоры с 45-нм ядром оказываются холоднее своих предшественников с микроархитектурой Core, но разница в температуре при полной загрузке составляет лишь 4-5 градусов. Дело в том, что ядро процессоров Wolfdale имеет меньшую площадь и, соответственно, гораздо более высокую плотность расположения транзисторов на полупроводниковом кристалле, что несколько затрудняет отвод от него теплового потока. Именно поэтому в состоянии покоя Wolfdale и Conroe показывают примерно одинаковые температуры. Что же касается относительно низкой температуры процессора Athlon 64 X2 6000+, TDP которого, к слову, в два раза выше, чем у Core 2 Duo, то обусловлена она не совсем удачным расположением термодатчика на ядре, который находится вдалеке от наиболее горячих участков полупроводникового кристалла этого CPU.

Из сказанного вполне ясно, что измерение температуры процессоров даёт уж слишком субъективную информацию. Поэтому мы уделили внимание и тестам энергопотребления, которые должны показать преимущества нового 45-нм ядра в полной мере. В проведённых опытах нами измерялся ток, проходящий через схему питания процессора, что позволяет оценить энергопотребление самих CPU (без учёта потерь в конвертере питания процессора).


Результаты, показанные новыми процессорами, выпущенными по 45-нм техпроцессу, более чем впечатляющие. Впрочем, иного и не ожидалось, ведь новый технологический процесс позволил не только уменьшить размеры элементов, но и значительно снизить токи утечки – ради этого Intel перешёл на использование в нём транзисторов с металлическим затвором и high-k диэлектриком. В итоге, потребляемая под нагрузкой процессорами Wolfdale мощность сравнима с энергопотреблением CPU двух-трёхлетней давности в состоянии покоя. Собственно, именно этот разительный контраст между поколениями процессоров подчёркивают результаты Athlon 64 X2, процессора, микроархитектура которого под высокие показатели "производительности на Ватт" ещё не оптимизировалась.

Выводы

Собственно, всё ясно и так. Обобщая вышесказанное, можно говорить о том, что новые двухъядерные процессоры Core 2 Duo E8500, E8400 и E8200, основанные на 45-нм ядрах, хороши во всём. Они не только быстрее предшественников при одинаковых тактовых частотах – максимальные достигнутые ими частоты ещё и выше, чем у предыдущих процессоров Intel. Если к этому добавить тот факт, что Intel собирается продавать новинки по тем же ценам, что и Core 2 Duo E6850, E6750 и E6550, то можно говорить о "бесплатном" увеличении быстродействия двухъядерных процессоров Intel на 10...15 %.


Кроме того, перевод процессоров Core 2 Duo на производство по новому технологическому процессу даёт пользователям и дополнительные бонусы. Во-первых, к ним может быть отнесена поддержка перспективного набора инструкций SSE4.1, которая ещё проявит себя в будущем, по мере оптимизации программного обеспечения. Во-вторых, процессоры Wolfdale крайне экономичны. В-третьих, новые процессоры обещают прекрасные возможности разгона, за что они наверняка найдут признание среди оверклокеров.

Иными словами, вторая версия двухъядерных процессоров, основанных на микроархитектуре Core, крайне удачна. Расстраивает лишь то, что появление этих CPU на прилавках магазинов в очередной раз ударит по позициям компании AMD, которая на данный момент не может предложить аналогичные по производительности варианты. Все двухъядерные процессоры этого производителя работают однозначно медленнее новых Core 2 Duo серии E8000, что автоматически "вытесняет" их из ценового диапазона "дороже 150 долларов", где отныне двухъядерные предложения Intel будут господствовать на безальтернативной основе.

Уточнить наличие и стоимость процессоров Intel Core 2 Duo E8000

Другие материалы по данной теме


Phenom: подарок на Новый год от AMD
Вторая итерация микроархитектуры Core: обзор Core 2 Extreme QX9650
Микроархитектура AMD K10

Процессор Conroe, выход которого планируется в самом ближайшем будущем, можно отнести, пожалуй, к числу самых ожидаемых новинок этого года. В настоящее время Conroe, который станет первым десктопным носителем новой микроархитектуры Core, разработанной израильской командой инженеров Intel (авторству которой принадлежит и весьма успешный Pentium M), представляется панацеей чуть ли не от всех бед, нажитых Intel в течение последних шести лет. Теперь уже даже у самых ярых сторонников Intel не вызывает сомнений тот факт, что микроархитектура NetBurst, впервые представленная в конце 2000 года, не оправдала возложенных на неё ожиданий. Итогом её использования компанией Intel в основе процессоров для настольного сегмента рынка стало значительное сокращение популярности продуктов компании, в особенности на розничном рынке. Потребители процессоров так и не смогли смириться с целым набором слабых мест, присущих процессорам семейств Pentium 4 и Pentium D, включающим невысокую производительность, запредельное тепловыделение и энергопотребление.

Но Intel учится на своих ошибках. В начале этого года было объявлено о кардинальной смене подхода к оптимизации потребительских качеств будущих CPU компании. От простой погони за максимальной производительностью Intel переходит к постановке во главу угла такого параметра, как соотношение быстродействия и энергопотребления. Именно с этих позиций инженеры Intel и создавали новую Core Microarchitecture (первоначальный вариант названия – Next Generation Microarchitecture), которая легла в основу процессоров Conroe.

Хочется заметить, что ряд критически настроенных обозревателей достаточно язвительно раскритиковал Intel за несколько непривычную постановку исходной задачи. Ведь с точки зрения соотношения производительности и энергопотребления чрезвычайно эффективными могут быть и экстраэкономичные процессоры, не обладающие приемлемым уровнем быстродействия. Однако не следует воспринимать всё слишком буквально. Меняя свои приоритеты, инженеры Intel указывают в первую очередь на тот факт, что теперь, помимо увеличения скорости CPU, они будут обращать самое пристальное внимание и на энергопотребление, которое объявлено не менее важной характеристикой конечного продукта.

Именно поэтому не следует думать, что основным преимуществом процессоров, построенных на базе микроархитектуры Core, станет их низкое тепловыделение и энергопотребление. На самом деле, инженеры приложили немало усилий и к увеличению производительности процессоров. Как демонстрируют предварительные тесты, Conroe имеет все шансы стать одним из самых быстрых CPU для настольных компьютеров. Это как раз и подогревает к нему и без того немалый интерес. Весьма вероятно, что появление на рынке процессоров Conroe сможет подвинуть семейство Athlon 64 на второй план, переведя его, пусть на время, из высшей лиги в категорию продуктов лишь для бюджетных компьютеров и компьютеров среднего уровня.

Очевидно, что, в свете вышесказанного, знакомству с Conroe, да и вообще с микроархитектурой Core, необходимо уделить повышенное внимание. Перед тем, как мы получим возможность подробно познакомиться с результатами всесторонних тестовых испытаний, некоторое время следует уделить и материальной части. В этой статье мы постараемся раскрыть основные сильные стороны микроархитектуры Core, благодаря которым процессоры Conroe смогут похвастать высокой производительностью наряду с небольшим тепловыделением. Кроме того, мы ознакомимся с некоторыми предварительными данными о производительности этих процессоров и обобщим имеющуюся информацию об их модельном ряде.

Intel Core Microarchitecture: основы

Согласно хорошо известной формуле, популяризацию которой начала ещё компания AMD при вводе в обращение своего процессорного рейтинга, производительность определяется как произведение тактовой частоты процессора на величину, определяющую количество инструкций, исполняемых CPU за один такт. Таким образом, есть два основных пути для увеличения быстродействия: наращивание тактовых частот и увеличение числа инструкций, исполняемых за один такт. С первым параметром всё понятно, а второй – определяется внутренним строением процессора и зависит от количества таких функциональных узлов процессора, как декодеры инструкций и исполнительные блоки.

Кроме того, есть и ещё один метод для повышения скорости процессоров – уменьшение числа операций, необходимых для обработки одних и тех же объёмов данных. Хорошей иллюстрацией прогресса в этом направлении можно считать внедрение наборов SIMD инструкций SSE, SSE2 и SSE3, позволяющих "одним махом" выполнять векторные операции.

Что же касается энергопотребления, то оно представляется как произведение тактовой частоты процессора, квадрата напряжения, при котором функционирует процессорное ядро, и некой константы "динамическая ёмкость", определяемой микроархитектурой CPU, и зависящей от числа транзисторов и их активности во время работы процессора.

В результате заключаем, что для оптимизации микроархитектуры с точки зрения соотношения производительности и энергопотребления разработчики должны фокусироваться в первую очередь на установлении баланса между количеством инструкций, исполняемых процессором за такт, и динамической ёмкостью. Напряжение питания ядра, также оказывающее влияние на соотношение производительности и энергопотребления, мало зависит от микроархитектуры и определяется, главным образом, технологическим процессом. Тактовая же частота, как показывают приведённые выкладки, на рассматриваемое соотношение вообще не влияет. Под влиянием этих идей и разрабатывалась микроархитектура Core.

Исходя из сформулированных требований, в качестве основы для будущих процессоров инженеры Intel выбрали, не NetBurst (что совершенно неудивительно), а существующую микроархитектуру мобильных процессоров, которые, являясь дальнейшим развитием Pentium Pro, Pentium II и Pentium III, обладают достаточно высоким уровнем быстродействия при хорошей экономичности. Впрочем, при этом новая микроархитектура Core содержит значительные усовершенствования, направленные как на увеличение производительности и расширение функциональности, так и на снижение энергопотребления. Соответственно, говорить о том, что перспективные процессоры станут адаптированными (с учётом новой сферы применения) Pentium M, было бы абсолютно неверно.

Судить об этом можно опираясь на простое перечисление основных формальных характеристик микроархитектуры Core. Например, процессоры, базирующиеся на Intel Core Microarchitecture, смогут обрабатывать до четырёх инструкций за такт, в чём они будут превосходить всех своих предшественников, включая и CPU на базе микроархитектуры NetBurst. Таким образом, теоретически, при одинаковой тактовой частоте будущие процессоры Intel смогут опережать в скорости работы все современные CPU, включая и текущие конкурирующие предложения AMD. Длина исполнительного конвейера процессоров с микроархитектурой Core составит 14 стадий. Это значит, что частоты будущих CPU будут определённо ниже, чем у Pentium 4 и Pentium D, длина конвейера у которых превышает 30 стадий. Но с точки зрения "производительности на ватт" короткий конвейер является скорее плюсом, чем минусом.

Что же касается более конкретных деталей, то первые процессоры, входящие в Intel Core Microarchitecture, будут иметь двухъядерный дизайн (выполненный на едином полупроводниковом кристалле), обладать кеш-памятью первого уровня объёмом 64 Кбайта (которая будет разделяться на две части по 32 Кбайта для кода и данных) и комплектоваться общей (разделяемой) на оба ядра кеш-памятью второго уровня объёмом 2 или 4 Мбайта. Чрезвычайно важно отметить, что процессоры с микроархитектурой Core будут обладать поддержкой 64-битных расширений Enhanced Memory 64 Technology (EM64T). Это существенное отличие новой микроархитектуры от микроархитектуры процессоров Pentium M, которые, как и более современные их последователи Core Duo, 64-битные режимы работы не поддерживают в силу заложенных в них ограничений.

Особенности микроархитектуры Core таковы, что она позволяет создание процессоров с различными характеристиками, нацеленными на всевозможные сегменты рынка. Как утверждают разработчики, искусственное уменьшение предельного энергопотребления процессоров с будущей микроархитектурой в два раза требует лишь 15-процентного снижения максимальной тактовой частоты. Благодаря этому свойству новая микроархитектура даст одновременный старт трём параллельным семействам процессоров: для мобильного рынка, настольных систем и серверов.

Процессоры с новой микроархитектурой для ноутбуков, получившие кодовое имя Merom, будут выпускаться исходя из их требуемого типичного тепловыделения, не превышающего 35 Ватт. Это позволит при сохранении того же, как и у мобильных компьютеров на базе современных процессоров Intel Core Duo, времени работы от аккумулятора, достичь более чем 20-процентного прироста в производительности.

Серверные варианты процессоров, названные кодовым именем Woodcrest, по сравнению с доступными в настоящее время двухъядерными CPU линейки Xeon, получат 80-процентный прирост в быстродействии, а их типичное энергопотребление снизится примерно на 35% и составит около 80 Вт.

Что же касается процессоров для "настольного" сегмента рынка, то им присвоено кодовое имя Conroe. По прогнозам рост производительности Conroe по сравнению со старшими моделями линейки Pentium D 9XX составит около 40%. При этом типичное энергопотребление упадёт примерно на такую же величину. В результате, энергопотребление будущих процессоров для настольных компьютеров (исключая модели, нацеленные на энтузиастов) будет лежать в пределах 65 Вт.

Приведённые данные по производительности и энергопотреблению выглядят весьма впечатляюще. Однако в то, что на такое способны процессоры, в основе которых лежит микроархитектура Pentium M, верится с трудом. Поэтому, чтобы развеять ненужные сомнения, самое время поговорить о том, какие же микроархитектурные инновации внесены в Intel Core Microarchitecture.

Основные усовершенствования

Intel Wide Dynamic Execution

Первое упоминание термина Dynamic Execution (динамическое исполнение) относится к процессорам Pentium Pro, Pentium II и Pentium III. Говоря о динамическом исполнении команд в этих процессорах, Intel подразумевал принципиально новую суперскалярную микроархитектуру P6, способную выполнять анализ потока кода, и обладающую возможностями спекулятивного (упреждающего) и внеочередного исполнения команд. При переводе процессоров для настольных компьютеров на микроархитектуру NetBurst, Intel стал говорить уже об усовершенствованном динамическом исполнении, которое, помимо перечисленных выше свойств, обладало более глубоким уровнем анализа кода и значительно улучшенными алгоритмами предсказания переходов.

Теперь же, в новой микроархитектуре Core, речь идёт о "широком" динамическом исполнении. Широким оно стало благодаря тому, что будущие процессоры Intel смогут исполнять больше операций за такт, нежели их предшественники. Благодаря добавлению в каждое ядро дополнительного декодера и исполнительных устройств, каждое из ядер будущих процессоров сможет выбирать из программного кода и исполнять до четырёх x86 инструкций одновременно, в то время как остальные процессоры AMD и Intel (как "настольные", так и мобильные), могут обрабатывать не более трёх инструкций за такт. На четыре декодера (один для сложных инструкций и три – для простых) микроархитектура Core предполагает наличие шести портов запуска (один – Load, два – Store и три универсальных). Кроме того, микроархитектура Core получила более совершенный блок предсказания переходов и более вместительные буферы команд, используемые на различных этапах анализа кода для оптимизации скорости исполнения.

Следует напомнить, что предшественники микроархитектуры Core, процессоры Pentium M, обладали чрезвычайно интересной технологией micro-ops fusion, направленной на снижение "накладных расходов" при выполнении некоторых x86 команд. Суть технологии micro-ops fusion чрезвычайно проста. В случае если x86 команда распадается на зависимые друг от друга микроинструкции, декодер осуществляет их привязку друг к другу. Такие последовательности микроинструкций, "склеенные" технологией micro-ops fusion для исполнения процессором в определённом порядке, представляются процессором на всех этапах, кроме собственно исполнения, одной командой. Это позволяет избежать ненужных простоев процессора в случае, если связанные микроинструкции оказываются оторванными друг от друга в результате работы алгоритмов внеочередного выполнения.

В дополнение к весьма удачной технологии micro-ops fusion, микроархитектура Core получила технологию macrofusion. Данная технология направлена на увеличение числа исполняемых за такт команд и заключается в том, что ряд пар связанных между собой последовательных x86 инструкций, таких как, например, сравнение со следующим за ним условным переходом, представляются внутри процессора одной микроинструкцией. Такая микроинструкция рассматривается планировщиком и выполняется на исполнительных устройствах как одна команда. Таким путём достигается как увеличение темпа исполнения кода, так и некоторая экономия энергии.

Intel Advanced Digital Media Boost

Отдельным направлением, по которому выполнялось совершенствование микроархитектуры Core, стала переработка блоков исполнения SIMD инструкций (SSE, SSE2, SSE3). Современное программное обеспечение, например, для обработки изображений, видео и звука, шифрования, научной и финансовой деятельности, достаточно широко использует наборы команд SSE, которые позволяют работать со 128-битовыми операндами различного характера (векторами и целочисленными либо вещественночисленными данными повышенной точности).

Именно этот факт заставил инженеров Intel задуматься об ускорении работы SSE блоков процессора, тем более что до настоящего времени процессоры Intel исполняют одну SSE-инструкцию, работающую с 128-битными операндами, лишь за два такта. Один такт тратился на обработку старших 64 бит, второй такт – на обработку младших. Новая же микроархитектура Core позволит ускорить работу с SSE инструкциями в два раза. Блоки SSE в будущих процессорах будут полностью 128-битовыми, что даёт возможность увеличить количество данных, обрабатываемых процессором за такт. И особенно в тех задачах, которые используют SIMD инструкции наиболее активно, а это, в первую очередь, различного рода мультимедиа-приложения.

Помимо увеличения скорости работы блоков исполнения SIMD инструкций, Intel в очередной раз провёл ревизию системы команд SSE. Результатом стало то, что уже ставший привычным набор инструкций SSE3 будет вновь дополнен восемью новыми командами. Вообще говоря, указанное расширение набора команд SSE3 задумывалось ещё при внедрении процессоров с кодовым именем Tejas, но в силу их отмены соответствующая модификация нашла своё место в микроархитектуре Core.

Intel Advanced Smart Cache

Поскольку микроархитектура Core изначально проектируется в двухъядерном варианте, разработчики получили возможность оптимизировать отдельные функциональные блоки будущих процессоров с учётом их этой особенности. Так, в отличие от доступных в настоящее время CPU для настольных компьютеров, процессоры с микроархитектурой Core получат разделяемый между вычислительными ядрами L2 кеш. Алгоритмы работы этой кеш-памяти во многом подобны тем механизмам, которые реализованы в настоящее время в двухъядерных мобильных процессорах Intel Core Duo.

Плюсов такого подхода к реализации кеш-памяти видится несколько. Во-первых, у процессора появляется возможность гибко регулировать размеры областей кеша, используемых каждым из ядер. Иными словами, доступ ко всему объёму L2 кеша может получить любое из ядер процессора с микроархитектурой Core. Это, в частности, значит и то, что когда одно из ядер бездействует, второе получает в своё полное распоряжение весь объём кеш-памяти. Если же одновременно работают два процессорных ядра, то кеш делится между ними пропорционально, в зависимости от частоты обращений каждого ядра к оперативной памяти. Более того, если оба ядра работают синхронно с одними и теми же данными, то хранятся они в общем L2 кеше только однократно. То есть, разделяемый интеллектуальный L2 кеш процессоров с микроархитектурой Core гораздо более эффективен и, даже можно сказать, более вместителен, чем два отдельных кеша, разделённых между ядрами.

Разделяемая кеш-память может оказаться полезной двухъядерным процессорам и в некоторых других случаях. Например, идущие в настоящие время разговоры о технологии Core Multiplexing Technology указывают на то, что инженеры Intel готовы представить на суд общественности механизм динамического отключения второго ядра, в зависимости от характера нагрузки на процессор. Очевидно, что в этом случае единый на два ядра кеш второго уровня способен решить массу проблем с технической реализацией этой технологии.

Второй значительный плюс объединённой кеш-памяти второго уровня заключается в том, что благодаря такой его организации значительно снижается нагрузка на оперативную память системы и на процессорную шину. Дело в том, что в этом случае перед системой не стоит задача контроля и обеспечения когерентности кеш-памяти различных ядер. В системах с двухъядерными процессорами с раздельными кешами, в случае, если оба ядра работают с одними и теми же данными, эти данные дублируются в кеш-памяти каждого из ядер. Таким образом, возникает необходимость в контроле их актуальности. Перед тем, как извлечь такие данные из L2 кеша для обработки, каждое процессорное ядро должно проверить, не изменило ли эти данные другое ядро. И если это так, то требуется обновление содержимого кеш-памяти, которое в системах на базе процессоров с микроархитектурой NetBurst выполняется через системную шину и оперативную память. Общий же на два ядра кеш позволяет полностью отказаться от этого неэффективного алгоритма.

Кроме того, посредством управляющей логики, предусмотренной в процессорах с микроархитектурой Core, станет возможным более простой обмен данными и между кеш-памятью первого уровня каждого из ядер через общий L2 кеш, что в итоге даст возможность гораздо более результативного взаимодействия ядер при совместной работе над одной задачей.

Intel Smart Memory Access

Технологии, объединенные под этим собирательным названием, направлены на уменьшение задержек, которые могут возникнуть при доступе процессора к обрабатываемым данным. Очевидно, что для этой цели как нельзя лучше подходит предварительная выборка данных из памяти в обладающие гораздо более низкой латентностью L1 и L2 кеши процессора. Надо сказать, что алгоритмы предварительной выборки данных эксплуатируются в процессорах Intel достаточно давно. Однако с выходом микроархитектуры Core соответствующий функциональный узел будет усовершенствован.

Микроархитектура Core предполагает реализацию в процессоре шести независимых блоков предварительной выборки данных. Два блока нагружаются задачей предварительной выборки данных из памяти в общий L2 кеш, ещё по два блока работают с кешами первого уровня каждого из ядер CPU. Каждый из этих блоков независимо друг от друга отслеживает закономерные обращения (потоковые, либо с постоянным шагом внутри массива) исполнительных устройств к данным. Базируясь на собранной статистике, блоки предварительной выборки стремятся подгружать данные из памяти в процессорный кеш ещё до того, как к ним последует обращение.

Также, L1 кеш каждого из ядер процессоров, построенных на базе Intel Core Microarchitecture, имеет по одному блоку предварительной выборки инструкций, работающий по аналогичному принципу.

Кроме улучшенной предварительной выборки данных, Intel Smart Access предполагает ещё одну интересную технологию, названную memory disambiguation (устранение противоречий в памяти). Данная технология направлена на повышение эффективности работы алгоритмов внеочередного исполнения инструкций, осуществляющих чтение и запись данных в памяти. Дело в том, что в современных процессорах, осуществляющих внеочередное исполнение команд, не допускается выполнение команды чтения до того, как не будут завершены все инструкции сохранения данных. Объясняется это тем, что планировщик заранее не обладает информацией о зависимости загружаемых и сохраняемых данных.

Однако достаточно часто последовательные инструкции сохранения и загрузки данных из памяти не имеют между собой никакой взаимной зависимости. Поэтому, отсутствие возможности изменения порядка их выполнения зачастую снижает загрузку исполнительных устройств и эффективность работы CPU в целом. Для решения этой проблемы и предусматривается новая технология memory disambiguation. Она предусматривает специальные алгоритмы, позволяющие с достаточно высокой вероятностью устанавливать зависимость последовательных команд сохранения и загрузки данных, и даёт возможность, таким образом, применять внеочередное выполнение инструкций к этим командам.

Таким образом, при условии правильной работы алгоритмов memory disambiguation процессор получает возможность более эффективного использования собственных исполнительных устройств. В случаях же ошибок в определении зависимых инструкций загрузки и сохранения данных, которые, согласно информации разработчиков, случаются достаточно редко, технология memory disambiguation детектирует возникший конфликт, перезагружает корректные данные и инициирует повторное исполнение "ошибочно" выполненной ветви кода.

Совместное использование предварительной выборки данных и технологии memory disambiguation повышает эффективность работы процессора с памятью не только за счёт минимизации возможных простоев исполнительных устройств, но и благодаря более эффективному использованию пропускной способности шины и снижению латентностей при обращениях к памяти.

Intel Intelligent Power Capability

Так как при разработке новой микроархитектуры Core инженеры стремились к оптимизации параметра "производительность на ватт", а также из-за того, что данная микроархитектура будет использоваться и в основе процессоров для ноутбуков, разработчики Intel сразу предусмотрели набор технологий, направленных на снижение энергопотребления и тепловыделения. Безусловно, будущие процессоры получат в своё распоряжение хорошо зарекомендовавшие себя технологии семейства Demand Based Switching (в первую очередь, Enhanced Intel SpeedStep и Enhanced Halt State). Но речь в данном случае идёт не о них.

Процессоры, основанные на микроархитектуре Core, получат возможность интерактивного отключения тех собственных подсистем, которые не используются в данный момент. Причём речь в данном случае идёт не о ядрах целиком. Декомпозиция процессора на отдельные функциональные узлы выполнена на гораздо более низком уровне. Каждое из процессорных ядер поделено на большое количество блоков и внутренних шин, питание которыми управляется раздельно посредством специализированных дополнительных логических схем. Главной особенностью этих схем, входящих в Intel Intelligent Power Capability, является то, что их работа не влечёт за собой увеличение времени отклика процессора на внешние воздействия, вызванное необходимостью приводить отключенные блоки в функциональное состояние.

Следует отметить, что возможность деактивации различных блоков CPU во время его работы заставило разработчиков пересмотреть подход к измерению температуры процессора. Процессоры с микроархитектурой Core будут снабжаться несколькими температурными датчиками, расположенными на ядре в тех местах, которые предрасположены к сильному нагреву. Для обработки показаний этих многочисленных датчиков процессор будет содержать специальную схему, определяющую максимальную температуру. Именно эта температура и будет рапортоваться процессором пользователю и системам аппаратного мониторинга.

Краткое сравнение микроархитектур: Intel Core и AMD K8

Естественно, основными соперниками для процессоров, построенных на базе микроархитетуры Core, выступят современные процессоры AMD, базирующиеся на микроархитектуре K8. Ведь именно эти процессоры следует считать самыми прогрессивными на данный момент. Давайте посмотрим с теоретических позиций, как смотрится новая микроархитектура Intel на фоне старой доброй микроархитектуры AMD.

Intel Core AMD K8
L1 кеш данных 32 Кбайта 64 Кбайта
L1 кеш инструкций 32 Кбайта 64 Кбайта
Латентность кеша L1 3 цикла 3 цикла
Ассоциативность L1 кеша 8-way 2-way
Размер L1 TLB Инструкции – 128 вхождений Инструкции – 32 вхождения
Данные – 256 вхождений Данные – 32 вхождения
Максимальный размер L2 кеша 4 Мбайта на два ядра 1 Мбайт на каждое ядро
Латентность кеша L2 14 циклов 12 циклов
Ассоциативность L2 кеша 16-way 16-way
Ширина шины L2 кеша 256 бит 128 бит
Размер L2 TLB - 512 вхождений
Длина конвейера 14 стадий 12 стадий
Число x86 декодеров 1 сложный и 3 простых 3 сложных
Целочисленные исполнительные устройства 3 ALU + 2 AGU 3 ALU + 3AGU
Load/Store устройства 2 (1 Load + 1 Store) 2
FP исполнительные устройства FADD + FMUL + FLOAD + FSTORE FADD + FMUL + FSTORE
SSE исполнительные устройства 3 (128-битные) 3 (64-битные)

Из приведённой таблицы ясно уже многое. А самое главное, это то, что процессоры с микроархитектурой Core имеют более "широкую" архитектуру, позволяющую выполнять больше инструкций за такт, нежели процессоры с микроархитектурой K8. Хотя исполнительные устройства процессоров с обеими конкурирующими архитектурами способны выполнять до трёх целочисленных x86 и x87 команд за такт, микроархитектура Core должна продемонстрировать подавляющее преимущество на SSE операциях. В то время как процессоры K8 могут совершать за один такт лишь одну или две 128-битные команды, Core может выполнить до трёх таких команд.

Кроме того, преимущество микроархитектуры Core кроется в гораздо более совершенной системе декодирования кода. Вместе с тем, что число декодеров в этом процессоре доведено до четырёх, применение технологии macrofusion может позволить обеспечить декодирование до пяти инструкций за такт (в идеальном случае). Процессоры же конкурента не способны на декодирование более трёх инструкций одновременно. Всё это позволяет говорить о том, что декодеры процессоров с микроархитектурой Core смогут более полно загружать исполнительные устройства этого процессора, выполняя в наиболее благоприятных для процессора условиях до четырёх команд за такт и превышая общий темп исполнения команд процессорами с микроархитектурой K8 на 33%.

К этому остаётся добавить и более эффективные алгоритмы работы с данными, присутствующие в процессорах семейства Core. Преимущества этой микроархитектуры заметны в первую очередь при рассмотрении системы кеширования данных. L1 кеш Core, хотя и имеет меньший размер, но может похвастать более высокой степенью ассоциативности. А L2 кеш просто имеет больший объём и более высокую пропускную способность. При этом разделяемое строение кеш-памяти второго уровня способно также получить дополнительные преимущества при многопоточной нагрузке.

Важным дополнением алгоритмов предварительной выборки данных, присутствующих в процессорах, построенных на основе микроархитектуры Core, следует считать и не имеющую аналогов в процессорах конкурента технологию memory disambiguation, позволяющую считать будущие процессоры Intel более out-of-order (внеочередными с точки зрения кода).

Фактически, единственным остающимся после появления микроархитектуры Core неоспоримым преимуществом AMD K8 следует считать лишь интегрированный контроллер памяти, который, несомненно, способен обеспечить более низкую латентность при работе с данными. Однако хватит ли этого AMD, чтобы бороться с будущими процессорами Conroe – очень большой вопрос, на который нам ещё предстоит найти ответ. Впрочем, в любом случае инженеры AMD не планируют сидеть, сложа руки. В будущих ядрах процессоров Athlon 64, запланированных на начало 2008 года, проектируются определённые улучшения, которые направлены на ликвидацию узких мест архитектуры. Однако это – тема отдельной статьи.

Микроархитектура Core для десктопов: процессоры Core 2 Duo

После рассмотрения основных особенностей микроархитектуры Core с теоретических позиций, самое время посмотреть на то, что мы получим на практике применительно к настольным компьютерам.

Процессоры Conroe, представляющие собой десктопное воплощение Core Microarchitecture, будут анонсированы в последних числах июля. Официальное название процессоров Conroe, под которым они начнут покорять рынок, звучит как Core 2 Duo. Очевидно, что такое имя подчёркивает принадлежность этих CPU к новой прогрессивной микроархитектуре.

Надо заметить, что Intel планирует достаточно агрессивный запуск продаж новых процессоров, дабы анонс Core 2 Duo не был награждён обидным эпитетом "бумажного" в преддверии активизации продаж, вызванных наступлением сезона "back-to-school". В день анонса не только ведущие партнёры Intel объявят о доступности решений, основанных на новой микроархитектуре, но и продвинутые пользователи смогут найти долгожданные процессоры в магазинах. Сомневаться в возможностях Intel выдержать намеченные ранее сроки вряд ли стоит: к настоящему времени компания располагает достаточно большим количеством образцов, которые свидетельствуют об отсутствии архитектурных и производственных препятствий на пути Conroe на рынок. Тем более что процессоры Conroe будут производиться с использованием хорошо отлаженного технологического процесса P1264 с нормами 65 нм. То есть, на базе того же самого техпроцесса, который уже давно используется для производства процессоров.

Первые представители линейки процессоров Core 2 Duo, с которыми нам предстоит столкнуться, будут обладать разделяемой между ядрами кеш-памятью второго уровня объёмом 2 или 4 Мбайта. При этом на первом этапе их тактовые частоты будут начинаться на отметке 1.86 ГГц и достигать в старших моделях 2.93 ГГц. В дальнейшем, по мере завоевания рынка, тактовые частоты линейки будут расширены в обе стороны.

Процессоры с микроархитектурой Core будут использовать процессорную шину Quad Pumped Bus, которая уже доказала свою эффективность во всех секторах рынка. Для процессоров Core 2 Duo частота этой шины, по крайней мере, на первых порах, будет установлена в 1067 МГц. Приятно, что использование старой шины заставило Intel отказаться от экспериментов с процессорной упаковкой. Conroe, также как и современные модели Pentium 4 и Pentium D, будут выпускаться в LGA775 обличии.

Однако сохранение старого типа упаковки не означает совместимости со старыми материнскими платами. Для поддержки Core 2 Duo от системных плат будет требоваться не только возможность тактования фронтальной шины на частоте 1067 МГц. Кроме этого материнские платы для новых процессоров должны использовать иной модуль регулирования напряжения (VRM 11). Поэтому, для придания совместимости с Core 2 Duo производителям придётся выпускать обновлённые материнские платы, в основе которых могут лежать чипсеты Intel 975X Express, Intel P965 Express, NVIDIA nForce 5XX Intel Edition или ATI Xpress 3200 Intel Edition.

Рейтинг моделей процессоров Core 2 Duo будет формироваться по тем же принципам, что и рейтинг мобильных процессоров линейки Core Duo. Для новой линейки он будет выглядеть как EXXXX, где лидирующая литера E указывает на предназначенность процессора к семейству продуктов для использования в настольных системах, а следующее за ней четырёхзначное число является отображением уровня производительности и технологической "продвинутости" продукта.

Следует отметить, что линейка Core 2 Duo будет расширена и моделью процессора "Extreme Edition". Такой CPU будет называться Core 2 Extreme и его рейтинг будет иметь вид XXXXX. Основным отличием Core 2 Extreme от Core 2 Duo (помимо экстремально высокой цены) станет повышенная тактовая частота.

Полностью линейка процессоров Conroe на начальный момент будет иметь следующий вид:

Процессор Тактовая частота, ГГц Размер L2 кеша, Мбайт Частота шины, МГц Типичное тепловыделение, Вт Стоимость, $
Core 2 Extreme X6800 2.93 4 1066 75 999
Core 2 Duo E6700 2.67 4 1066 65 530
Core 2 Duo E6600 2.4 4 1066 65 316
Core 2 Duo E6400 2.13 2 1066 65 224
Core 2 Duo E6300 1.86 2 1066 65 183

Предварительное тестирование производительности

То, что от новых процессоров с микроархитектурой Core можно ожидать многого, сомнению не подвергается. Однако, для того, чтобы получить хотя бы примерное представление о том, каким окажется уровень производительности Core 2 Duo, нужны практические испытания. К счастью, в наших руках оказался один из многочисленных инженерных образцов процессора Core 2 Duo, благодаря которому мы можем представить вашему вниманию предварительные тесты носителя новой микроархитектуры Intel.

Для тестов нам достался процессор Core 2 Duo E6600, работающий на частоте 2.4 ГГц и оснащённый L2 кеш-памятью объёмом 4 Mбайта.

Процессор, оказавшийся в наших руках, имел номер степпинга B0, соответственно, это лишь инженерный экземпляр. Серийные процессоры Conroe, которые появятся в продаже через месяц, будут иметь более новый степпинг ядра. Поэтому, приводимые нами результаты тестов носят статус предварительных, строить окончательные выводы, базируясь на них, пока нельзя.

Для испытаний процессора нами была выбрана материнская плата Intel D975XBX Bad Axe, которая, начиная с номера ревизии 304, имеет совместимый с Core 2 Duo стабилизатор питания CPU.

В качестве соперников для процессора Core 2 Duo E6600, протестированного нами, мы избрали двухъядерные CPU аналогичной ценовой категории, вернее такие, которые будут иметь в августе сравнимую стоимость. Это – старшая модель в семействе Intel Pentium D с процессорным номером 960, которая в ближайшее время подешевеет до $316, а также процессоры AMD Athlon 64 X2 с рейтингами 4600+ и 5000+, стоимость которых составит в августе $301 и $403 соответственно. Отметим, что в сравнении не принимает участие модель Athlon 64 X2 4800+ с суммарной L2 кеш-памятью объёмом 2 Мбайта, ибо AMD озвучила своё намерение вывести из ассортимента такие продукты. Также хочется обратить внимание и на тот факт, что частота процессора Athlon 64 X2 4600+ равна 2.4 ГГц, что позволяет, при сопоставлении результатов этого процессора и Core 2 Duo E6600, получить информацию о скорости работы архитектур Core и K8 при работе их носителей на эквивалентной тактовой частоте.

Итак, тестовые системы, принимавшие участие в экспериментах, были построены на базе следующего оборудования:

  • Процессоры:
    • AMD Athlon 64 X2 5000+ (Socket AM2, 2.6GHz, 2x512KB L2);
    • AMD Athlon 64 X2 4600+ (Socket AM2, 2.4GHz, 2x512KB L2);
    • Intel Core 2 Duo E6600 (LGA775, 2.4GHz, 4MB L2);
    • Intel Pentium D 960 (LGA775, 3.6GHz, 2x2MB L2).
  • Материнские платы:
    • ASUS M2N32-SLI Deluxe (Socket AM2, NVIDIA nForce 590 SLI);
    • Intel D975XBX Bad Axe (LGA775, Intel 975X Express).
  • Память: 2048MB DDR2-800 SDRAM (Mushkin XP2-6400PRO, 2 x 1024 MB, 4-4-4-12).
  • Графическая карта: PowerColor X1900 XTX 512MB (PCI-E x16).
  • Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).
  • Операционная система: Microsoft Windows XP SP2 с DirectX 9.0c.

Тестирование выполнялась при настройках BIOS Setup материнских плат, установленных на максимальную производительность.

Заметим, что для сравнения с перспективным процессором Intel Core 2 Duo мы сознательно использовали процессоры AMD, работающие в новой платформе Socket AM2. Использование именно этих CPU даёт возможность получить на платформе от AMD максимальную производительность, при условии применения быстрой DDR2-800 SDRAM. Поэтому, можно говорить о том, что для AMD весь потенциал для увеличения быстродействия уже исчерпан, улучшения результатов процессоров этого производителя в ближайшее время ждать не откуда.

Переходим непосредственно к результатам тестов. В первую очередь – простенькие однопоточные бенчмарки, популярные в оверклокерской среде:

Игровые приложения:

Кодирование видео и аудио:

Редактирование изображений и видеомонтаж:

Профессиональные задачи:

И ещё пара тестов , для полной картины:

Приведённые цифры в комментариях не нуждаются. Практические результаты полностью подтверждают теоретические выводы, сделанные нами выше. Процессоры Core 2 Duo, несомненно, ставят под вопрос конкурентоспособность современных процессоров с архитектурой K8. Конечно, есть масса аспектов, влияющих на привлекательность того или иного CPU. Производительность значит далеко не всё. Нуждаются в уточнении разгонные возможности Core 2 Duo, практическое тепловыделение этих процессоров и прочие параметры. Но те предварительные данные о быстродействии, что мы видим, вызывают лишь одно желание – сказать AMD: "До свиданья, дорогие друзья". Пока инженеры AMD не предложат обновления своей архитектуры K8, процессоры семейства Athlon 64 не смогут претендовать на место внутри высокопроизводительных PC.

Выводы

Собственно, окончательные выводы делать пока рано. Все наши умозаключения, сделанные в этом материале, базируются лишь на теоретических выкладках и на тестировании предварительного образца CPU. Но, судя по всему, времена, когда процессоры Intel явно отставали от конкурирующих продуктов AMD по многим параметрам, подходят к концу. Выход процессоров с микроархитектурой Core, несомненно, изменит положение сил на процессорном рынке и, скорее всего, не в пользу AMD.

На этом, позвольте, на сегодня закончить, поскольку более подробную и детальную информацию о многообещающей новинке от Intel мы будем готовы сообщить вам только после официального анонса этих процессоров.

В этой статье будет рассмотрен отличный центральный процессор 8-летней давности - Intel Характеристики этого чипа на сегодняшний день нельзя уже назвать актуальными, но он все еще отлично смотрится как основа для системных блоков офисного или бюджетного назначения. Именно в этом контексте и будут рассмотрены его спецификации.

Ниша процессора

На момент начала продаж этот процессор принадлежал к решениям среднего класса. Большая часть существующего софта на тот момент на нем могла вполне успешно функционировать. Конечно, некоторые игрушки на этом аппаратном обеспечении шли не на максимальных настройках, но все же они в обязательном порядке запускались. Но сейчас ситуация изменилась. В некоторых наиболее свежих и самых требовательных игрушках присутствует проверка на наличие 4 ядер, а в этом чипе их всего 2. Поэтому такой софт на нем не пойдет. Как результат, такие чипы относятся к полупроводниковым решениям начального класса.

Варианты поставки

В двух возможных вариантах комплектации поставлялся Core 2 DUO E7400. Описание на официальном сайте производителя указывает на ВОХ и TRAIL. Второй из них был более скромным и включал следующее:

  • Сам чип.
  • Фирменную наклейку с логотипом модели ЦПУ.
  • Гарантийный талон от производителя.
  • Краткое руководство по использованию полупроводникового продукта.

Первый же вариант был более расширенным и, кроме всего ранее перечисленного, включал следующее:

  • Фирменный кулер.
  • Термопасту.

Процессорный разъем. Общие характеристики ЦПУ

В основной и наиболее распространенный процессорный разъем на то время должен был устанавливаться Intel Core 2 DUO E7400.

Характеристики указывают на поддержку LGA775. На сегодняшний день все процессоры этого сокета морально устарели и сняты с производства. Но все еще есть его складские запасы, а потому купить такую полупроводниковую продукцию все еще можно. Данный процессор имеет всего 2 вычислительных модуля. Также у него отсутствует поддержка технологии НТ и 2-го увеличения количества логических потоков на уровне софта в этом случае невозможно получить.

Технология производства

По наиболее передовому техпроцессу в 2008 году производился Intel Характеристики этого кремниевого кристалла указывают на нормы допуска в 45 нм. Сейчас наиболее передовые ЦПУ уже изготавливаются по 14 нм. С учетом разницы в 3 раза и с учетом временного интервала в 8 лет получается не такая уж и большая разница между героем данного обзора и бюджетными центральными процессорами последнего поколения.

Кеш

Всего лишь 2 уровня кеша есть в «Кор 2 DUO E7400». В 2008 году среди чипов для обычных персональных компьютеров 3-уровневую кеш-память встретить еще было невозможно. Поэтому в этом плане данный чип чем-то особенным не выделялся. Сейчас это одна из причин, по которой этот ЦПУ не может соперничать по быстродействию с наиболее доступными процессорами последних нескольких поколений. Первый уровень имел общий размер в 64 Кб. При этом они были разделены на 2 равные части, размер каждой из которых был равен 32 Кб. Второй же уровень кеша был общим для всех вычислительных ресурсов ЦПУ и имел размер 3 Мб.

Оперативная память

Под использование в сочетании с памятью DDR2 был рассчитан процессор Intel Core 2 DUO E7400. Характеристики данного ЦПУ указывают на рекомендованные частоты в 800 МГц или 1,066 МГц. Контроллер оперативной памяти, в отличие от нынешних чипов, не входил в состав полупроводникового кристалла ЦПУ. Поэтому его конкретное исполнение зависело от набора системной логики на материнской плате.

Частота. Разгон

Значение тактовой частоты для данного полупроводникового решения было установлено на 2,8 ГГц. Множитель же у этого ЦПУ установлен на значении 10,5. Это значение зафиксировано и простым изменением этого параметра разогнать этот чип невозможно. Поэтому единственным способом увеличить быстродействие такого ПК остается увеличение частоты системной шины на материнской плате. Ее значение установлено на 266,7 МГц. На практике с качественной системой охлаждения частоту системной шины можно было поднять до 390 МГц и получить для чипа уже 4,1 ГГц. В процентном отношении это 46%. Как результат, можно отметить что у этого ЦПУ был отменный разгонный потенциал.

Отзывы. Цена

В 110 долларов в начале продаж вариант комплектации TRAIL был оценен производителем данного чипа. В 125 долларов была оценена более продвинутая комплектация ВОХ Intel Core 2 DUO E7400. Характеристики (отзывы владельцев и специалистов это подтверждают) у этого ЦПУ весьма скромные, и он уступает по быстродействию даже наиболее бюджетным процессорам последнего поколения. Ключевая разница здесь кроется в частоте и кеш-памяти, которая на текущий момент имеет уже трехуровневую организацию. Также нужно учесть и то, что этот процессор выпущен достаточно давно, а потому рассматривать его как основу для игровой системы не стоит. Он устарел и подходит лишь для решения наиболее простых задач: воспроизведение видео- или аудиозаписей, веб-серфинг и офисные программы. Также к этому списку можно добавить нынешние наименее требовательные или даже устаревшие старые игрушки. Чего-то большего из этого полупроводникового ЦПУ выжать не получится.

Итоги

Для 2008 года отличным процессорным решением был Intel Core 2 DUO E7400. Характеристики у него действительно были на то время неплохими. Но сейчас этот ЦПУ устарел как морально, так и физически. За прошедшее время он перешел из ниши продуктов среднего класса в бюджетный сегмент. Как результат, на таких персональных компьютерах можно лишь решать сейчас наиболее простые задачи. Ну а для чего-то большего использовать такую вычислительную систему не получится.

Intel Core 2 («Интел Ко 2») - линейка 32-битных многоядерных микропроцессоров восьмого поколения для настольных, мобильных и серверных компьютеров архитектуры x86, построенное на базе микроархитектуры Intel Core. За счет технологии EM64T процессоры Intel Core 2 могут работать как в 32-битном режиме, так и в 64-битном.

В июле 2006 корпорацией Intel были представлены 10 двухъядерных микропроцессоров Intel Core 2 Duo (4 варианта для настольных и 6 вариантов для мобильных компьютеров) и Intel Core 2 Extreme (X6800). В ноябре 2006 был представлен первый четырехъядерный процессор этой линейки, созданный на базе ядра Kentsfield, который получил название Intel Core 2 Extreme QX6700. В дальнейшем (c 2007) четырехъядерные процессоры на базе Kentsfield планируется обозначать как Intel Core 2 Quad. Также предполагается выпуск урезанных одноядерных версий Intel Core 2 Solo.

Intel Core 2 Duo на базе ядра Conroe (65 нм технология, 291 млн транзисторов) были представлены в вариантах E6300 (1, 86 ГГц), E6400 (2, 13 ГГц), E6600 (2, 40 ГГц), E6700 (2, 66 ГГц), при этом дешевые модели (E6300 и E6400) выпускаются с урезанной до 2 Мб общей для 2 ядер кэш-памятью 2 уровня, в отличии от 4 Мб у E6600 и E6700. Объединение кэш-памяти ядер позволяет более эффективно использовать ресурсы процессора.

Intel Core 2 Duo на базе ядра Merom, предназначенный для мобильных процессоров, выпускается в следующих вариантах: T5200 с частотой 1, 60 ГГц, T5500 с 1, 66 ГГц, T5600 с 1, 83 ГГц, T7200 - 2, 00 ГГц, T7400 - 2, 16 ГГц, T7600 - 2, 33 ГГц. Более дешевые T5x00 имеют 2 Мб общей для двух ядер кэш-памяти второго уровня, более дорогие T7x00 - 4 Мб.

Intel Core 2 Extreme построен на ядре Conroe XE и призван заменить такие процессоры как Pentium 4 Extreme Edition и двуядерные Pentium Extreme Edition. Core 2 Extreme имеет тактовую частоту 2.93 ГГц и 1066 МГц FSB, хотя сначала ожидалось 3.33 ГГц и 1333 МГц соответственно. Тепловыделение этого семейства составляет 75-80 ватт - при максимальной нагрузке X6800 не греется выше 45° C, а с включенным SpeedStep средняя температура простоя составляет 25° C.

Процессоры Intel Core 2 Duo работают на эффективной частоте процессорной шины 1066 МГц (пропускная способность 8.5 Гбайт/с) и 667 МГц (мобильные процессоры), поддерживают оперативную память DDR2 SDRAM, работающую на эффективной частоте 800 МГц и выше. Объем кэш-памяти первого уровня составляет 64 Кб (по 32 Кб на инструкции и данные).

Core 2 Duo вставляются в разъем LGA775, но совместимы только с новейшими материнскими платами. Core 2 Duo на данный момент поддерживают материнские платы со следующими чипсетами: Intel 865PE, Intel 945P/PL/G, Intel 955X, Intel 975X, Intel P/G/Q965, Intel Q963, Intel 946GZ/PL; ATi Radeon Xpress 200, ATi RD600 и RS600; nForce 4 SLI Intel Edition, nForce 570/590 Intel Edition and nForce 680i/650i; VIA PT880/PT880 Ultra, VIA PT890, VIA PM880 и PM890; SiS662. Кроме того, материнская плата должна обязательно поддерживать спецификацию питания VRD 11.0 и иметь соответствующую версию BIOS (ранние версии BIOS’а некоторых материнских плат с описанными выше условиями могут не определить процессор; при необходимости новую версию BIOS’а можно взять на официальном сайте производителя).

Благодаря своей архитектуре и применению ряда энергосберегающих технологий типичное тепловыделение процессором Intel Core 2 Duo составляет 65-75 Вт; то есть при средней загруженности температура на поверхности процессора не превышает 40-50° С. По результатам сравнительных тестов вышедшие в июле 2006 Intel Core 2 Duo E6600 и E6700 оказались существенно более производительными, нежели топовые модели AMD на тот период.

В отличии от процессоров предыдущего поколения, работавших на сравнительно высокой тактовой частоте, процессоры Intel Core 2 имеют значительно большие возможности для оверклокинга («разгона»). Результаты разгонов показывают, что E6700 и E6600 стабильно работают на частоте 4 ГГц с воздушным охлаждением и на частоте 5.4 ГГц при охлаждении жидким азотом, несмотря на заблокированный множитель. А Intel Core 2 Extreme X6800, у которого множитель разблокирован, может быть разогнан до 3.6 ГГц, даже с обычным кулером и без повышения напряжения.

Особенности микроархитектуры Intel Core

При создании этого семейства Intel отказалась от архитектуры NetBurst, на базе которой были построены предыдущие модели Intel Pentium 4 и Intel Pentium D: она позволяла существенно увеличить тактовую частоту процессора (до 3-4 ГГц), но не давала прорыва в производительности по сравнению с соответствующими решениями AMD. Кроме того, процессоры архитектуры NetBurst обладали высоким энергопотреблением и тепловыделением, что сказывалось на надежности их работы. Новые процессоры были разработаны на базе новой микроархитектуры Intel Core, которую Intel называет новым этапом в развитии своих микропроцессоров с момента появления торговой марки Intel Pentium в 1993 (поэтому семейство не содержит в своем названии торговой марки Pentium).

Архитектурно наиболее близким предшественником Core 2 Duo считается не Intel Pentium 4, а Intel Pentium M (который в свою очередь является развитием архитектуры Intel Pentium III и Pentium Pro). По сравнению с Pentium M в Intel Core 2 Duo добавлены следующие возможности: технология Wide Dynamic Execution, позволяющая каждому процессорному ядру выполнять до четырех инструкций за такт; увеличенная длина конвейера (до 14 стадий, по сравнению с Pentium 4 длина конвейера была сокращена); увеличенный размер буферов, связанных с внеочередным исполнением инструкций; общая для ядер процессора кэш-память второго уровня (технология Advanced Smart Cache); увеличенная пропускная способность L2-кэша; возможность непосредственного доступа к кэш-памяти первого уровня соседнего ядра; улучшенная предвыборка из памяти; технология Smart Memory Access, снижающая задержки при доступе к памяти; усовершенствованные технологии энергосбережения; поддержка 64-битных вычислений (Intel EM64T); поддержка нового набора SIMD инструкций, получившего название SSE4.

Для поддержки Core 2 Duo от системных плат требуется возможность тактования фронтальной шины на частоте 1067 МГц.

Core 2 Duo выбивает Athlon 64: игра закончена?

Линейка процессоров Intel основана на полностью обновлённой микро-архитектуре. Технические детали нового процессора с ядром Conroe были объявлены ещё в марте 2006 года, а первые тесты доказали, что Intel не шутит: Core 2 Duo должен стать бесспорным лидером по производительности и по соотношению производительности на ватт. Что ж, настало время отделить факты от слухов.

Intel говорит не просто об изменениях в новой микро-архитектуре процессоров , а о кардинальном обновлении. Инженеры компании взяли некоторые элементы текущей микро-архитектуры Pentium D NetBurst и добавили к ней ингредиенты, сделавшие мобильные процессоры Pentium M и Core Duo столь популярными на рынке, в результате чего и родилась новая микро-архитектура Core 2 . Ключевой целью было достижение идеального соотношения между производительностью и энергопотреблением. В принципе, такая цель как раз является прямым результатом хорошего соотношения производительности на ватт процессоров AMD, а также критики платформ Intel за чрезмерно высокое энергопотребление и требования к охлаждению.

У специалистов компьютерной индустрии тот факт, что процессоры обходят Athlon 64, вряд ли вызвал удивление. Не будем забывать о том, что Core 2 Duo - совершенно новый и современный процессор, а архитектура Athlon 64 X2 существует на рынке уже продолжительное время. Intel приложила все усилия, чтобы после двух лет лидерства Athlon 64 выпустить новый превосходный продукт, который смог бы разбить конкурента.

Что ж, сядьте поудобнее и уберите подальше от себя острые предметы. Intel стал новым лидером по производительности. Повторно описывать технические и архитектурные детали ядра Core 2 Duo "Conroe" мы не будем, а те, кому они требуются, могут посетить нашу статью с весеннего IDF . На этот раз мы внимательно отнесёмся к результатам тестов, проведём анализ и сделаем выводы. Посмотрим, какое влияние способен оказать на AMD.

Версии процессоров Core 2 Duo

27 июля выйдут четыре модели для массового рынка и один high-end процессор. Лидером по производительности станет Core 2 Extreme X6800 (будьте готовы расстаться с немалыми средствами, если пожелаете приобрести именно его), а основной ударной силой будут модели от E6300 до E6700.

Модель Core 2 Duo Тактовая частота (МГц) Множитель Частота FSB (МГЦ) Кэш L2 (Мбайт)
Core 2 Extreme X6800 2933 x11 266 (FSB1066 QDR) 4
Core 2 Duo E6700 2666 X10 266 МГц (FSB1066 QDR) 4
Core 2 Duo E6600 2400 X9 266 (FSB1066 QDR) 4
Core 2 Duo E6400 2133 X8 266 (FSB1066 QDR) 2
Core 2 Duo E6300 1866 X7 266 (FSB1066 QDR) 2

Все процессоры Core 2 Duo работают с тактовой частотой системной шины (Front Side Bus, FSB) 266 МГц, в то время как большинство моделей Pentium 4 и Pentium D используют 200-МГц шину. Поскольку за такт передаётся учетверённое количество информации (QDR), то мы получаем приятную для слуха частоту FSB1066 с пропускной способностью 8,5 Гбайт/с. За исключением процессоров начального уровня, все модели оснащены 4 Мбайт кэша L2, который используют оба процессорных ядра. Все процессоры поддерживают 64-битные расширения Intel (EM64T), мультимедийные инструкции (SSE2 и SSE3), технологию виртуализации (VT) и бит запрета выполнения (XD). Кроме этих функций, все модели поддерживают последние технологии управления энергопотреблением вроде Thermal Monitor 2 (TM2), Enhanced Halt State (C1E) и Enhanced SpeedStep (EIST).

Core 2 Extreme X6800

Процессор Extreme Edition является единственной моделью, которая позволяет менять множитель. Поэтому его легко разогнать.

Линейка Core 2 Duo

Процессоры Core 2 Duo работают на частотах от 1,86 до 2,66 ГГц.



СОДЕРЖАНИЕ