Практические советы по созданию RAID-массивов на домашних ПК. Виды RAID и их характеристики

Теперь посмотрим какие есть виды и чем они отличаются.

Калифорнийский университет в Беркли представилследующие уровни спецификации RAID, которые были приняты как стандарт де-факто:

  • RAID 0 - дисковый массив повышенной производительности с чередованием, без отказоустойчивости;
  • - зеркальный дисковый массив;
  • RAID 2 зарезервирован для массивов, которые применяют код Хемминга;
  • RAID 3 и 4 - дисковые массивы с чередованием и выделенным диском чётности;
  • - дисковый массив с чередованием и «невыделенным диском чётности»;
  • - дисковый массив с чередованием, использующий две контрольные суммы, вычисляемые двумя независимыми способами;
  • - массив RAID 0, построенный из массивов RAID 1;
  • - массив RAID 0, построенный из массивов RAID 5;
  • - массив RAID 0, построенный из массивов RAID 6.

Аппаратный RAID-контроллер может поддерживать несколько разных RAID-массивов одновременно, суммарное количество жёстких дисков которых не превышает количество разъёмов для них. При этом контроллер, встроенный в материнскую плату, в настройках BIOS имеет всего два состояния (включён или отключён), поэтому новый жёсткий диск, подключённый в незадействованный разъём контроллера при активированном режиме RAID, может игнорироваться системой, пока он не будет ассоциирован как ещё один RAID-массив типа JBOD (spanned), состоящий из одного диска.

RAID 0 (striping - «чередование» )

Режим, при использовании которого достигается максимальная производительность. Данные равномерно распределяются по дискам массива, дискиобъединяются в один, который может быть размечен на несколько. Распределенные операции чтения и записи позволяют значительно увеличить скорость работы, поскольку несколько дисков одновременно читают/записывают свою порцию данных. Пользователю доступен весь объем дисков, но это снижает надежность хранения данных, поскольку при отказе одного из дисков массив обычно разрушается и восстановить данные практически невозможно. Область применения - приложения, требующие высоких скоростей обмена с диском, например видеозахват, видеомонтаж. Рекомендуется использовать с высоконадежными дисками.

(mirroring - «зеркалирование» )

массив из двух дисков, являющихся полными копиями друг друга. Не следует путать с массивами RAID 1+0, RAID 0+1 и RAID 10, в которых используется более двух дисков и более сложные механизмы зеркалирования.

Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения при распараллеливании запросов.

Имеет высокую надёжность - работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска, т.е. значительно ниже вероятности выхода из строя отдельного диска. На практике при выходе из строя одного из дисков следует срочно принимать меры - вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва.

Похожий на RAID10 вариант распределения данных по дискам, допускающий использование нечётного числа дисков (минимальное количество - 3)

RAID 2, 3, 4

различные варианты распределенного хранения данных с дисками, выделенными под коды четности и различными размерами блока. В настоящее время практически не используются из-за невысокой производительности и необходимости выделять много дисковой емкости под хранение кодов ЕСС и/или четности.

Основным недостатком уровней RAID от 2-го до 4-го является невозможность производить параллельные операции записи, так как для хранения информации о чётности используется отдельный контрольный диск. RAID 5 не имеет этого недостатка. Блоки данных и контрольные суммы циклически записываются на все диски массива, нет асимметричности конфигурации дисков. Под контрольными суммами подразумевается результат операции XOR (исключающее или). Xor обладает особенностью, которая даёт возможность заменить любой операнд результатом, и, применив алгоритм xor , получить в результате недостающий операнд. Например: a xor b = c (где a , b , c - три диска рейд-массива), в случае если a откажет, мы можем получить его, поставив на его место c и проведя xor между c и b : c xor b = a. Это применимо вне зависимости от количества операндов: a xor b xor c xor d = e . Если отказывает c тогда e встаёт на его место и проведя xor в результате получаем c : a xor b xor e xor d = c . Этот метод по сути обеспечивает отказоустойчивость 5 версии. Для хранения результата xor требуется всего 1 диск, размер которого равен размеру любого другого диска в raid.

Достоинства

RAID5 получил широкое распространение, в первую очередь, благодаря своей экономичности. Объём дискового массива RAID5 рассчитывается по формуле (n-1)*hddsize, где n - число дисков в массиве, а hddsize - размер наименьшего диска. Например, для массива из четырех дисков по 80 гигабайт общий объём будет (4 - 1) * 80 = 240 гигабайт. На запись информации на том RAID 5 тратятся дополнительные ресурсы и падает производительность, так как требуются дополнительные вычисления и операции записи, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких дисков массива могут обрабатываться параллельно.

Недостатки

Производительность RAID 5 заметно ниже, в особенности на операциях типа Random Write (записи в произвольном порядке), при которых производительность падает на 10-25% от производительности RAID 0 (или RAID 10), так как требует большего количества операций с дисками (каждая операция записи, за исключением так называемых full-stripe write-ов, сервера заменяется на контроллере RAID на четыре - две операции чтения и две операции записи). Недостатки RAID 5 проявляются при выходе из строя одного из дисков - весь том переходит в критический режим (degrade), все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности снижается до надежности RAID-0 с соответствующим количеством дисков (то есть в n раз ниже надежности одиночного диска). Если до полного восстановления массива произойдет выход из строя, или возникнет невосстановимая ошибка чтения хотя бы на еще одном диске, то массив разрушается, и данные на нем восстановлению обычными методами не подлежат. Следует также принять во внимание, что процесс RAID Reconstruction (восстановления данных RAID за счет избыточности) после выхода из строя диска вызывает интенсивную нагрузку чтения с дисков на протяжении многих часов непрерывно, что может спровоцировать выход какого-либо из оставшихся дисков из строя в этот наименее защищенный период работы RAID, а также выявить ранее не обнаруженные сбои чтения в массивах cold data (данных, к которым не обращаются при обычной работе массива, архивные и малоактивные данные), что повышает риск сбоя при восстановлении данных.

Минимальное количество используемых дисков равно трём.

RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, относительно RAID 5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также читать и перезаписывать больше дисковых блоков при записи каждого блока).

RAID 0+1

Под RAID 0+1 может подразумеваться в основном два варианта:

  • два RAID 0 объединяются в RAID 1;
  • в массив объединяются три и более диска, и каждый блок данных записывается на два диска данного массива; таким образом, при таком подходе, как и в «чистом» RAID 1, полезный объём массива составляет половину от суммарного объёма всех дисков (если это диски одинаковой ёмкости).

RAID 10 (1+0)

RAID 10 - зеркалированный массив, данные в котором записываются последовательно на несколько дисков, как вRAID 0. Эта архитектура представляет собой массив типа RAID 0, сегментами которого вместо отдельных дисков являются массивы RAID 1. Соответственно, массив этого уровня должен содержать как минимум 4 диска (и всегда чётное количество). RAID 10 объединяет в себе высокую отказоустойчивость и производительность.

Утверждение, что RAID 10 является самым надёжным вариантом для хранения данных вполне обосновано тем, что массив будет выведен из строя после выхода из строя всех накопителей в одном и том же массиве. При одном вышедшем из строя накопителе, шанс выхода из строя второго в одном и том же массиве равен 1/3*100=33%. RAID 0+1 выйдет из строя при двух накопителях, вышедших из строя в разных массивах. Шанс выхода из строя накопителя в соседнем массиве равен 2/3*100=66%, однако так как накопитель в массиве с уже вышедшим из строя накопителем уже не используется, то шанс того, что следующий накопитель выведет из строя массив целиком равен 2/2*100=100%

массив, аналогичный RAID5, однако кроме распределенного хранения кодов четности используется распределение резервных областей - фактически задействуется жесткий диск, который можно добавить в массив RAID5 в качестве запасного (такие массивы называют 5+ или 5+spare). В RAID 5 массиве резервный диск простаивает до тех пор, пока не выйдет из строя один из основных жестких дисков, в то время как в RAID 5EE массиве этот диск используется совместно с остальными HDD все время, что положительно сказывается на производительность массива. К примеру, массив RAID5EE из 5 HDD сможет выполнить на 25% больше операций ввода/вывода за секунду, чем RAID5 массив из 4 основных и одного резервного HDD. Минимальное количество дисков для такого массива - 4.

объединение двух(или более, но это крайне редко применяется) массивов RAID5 в страйп, т.е. комбинация RAID5 и RAID0, частично исправляющая главный недостаток RAID5 - низкую скорость записи данных за счёт параллельного использования нескольких таких массивов. Общая ёмкость массива уменьшается на ёмкость двух дисков, но, в отличие от RAID6, без потери данных такой массив переносит отказ лишь одного диска, а минимально необходимое число дисков для создания массива RAID50 равно 6. Наряду с RAID10, это наиболее рекомендуемый уровень RAID для использования в приложениях, где требуется высокая производительность в сочетании приемлемой надёжностью.

объединение двух массивов RAID6 в страйп. Скорость записи повышается примерно в два раза, относительно скорости записи в RAID6. Минимальное количество дисков для создания такого массива - 8. Информация не теряется при отказе двух дисков из каждого RAID 6 массива

В последнее время в мировой компьютерной прессе стало появляться довольно много статей на тему: «Почему RAID-5 это плохо» (пример раз , два , и другие)

Постараюсь, без ныряния в инженерные и терминологические дебри объяснить, почему до сих пор RAID-5 вроде работал, а теперь вдруг перестал.

Емкость жестких дисков за последние несколько лет растет без особых тенденций к остановке. Однако, хотя емкость дисков чуть ли не удваивается каждый год, прирост их быстродействия, то есть скорости передачи данных, за тот же срок увеличивается всего в проценты. Да, действительно, на дисках появляются интерфейсы SATA, SATA-II, и ждем уже SATA-III, но стали ли диски быстрее работать, а не просто получили новый интерфейс с бубенчиками и новыми круглыми цифрами теоретических показателей вида "цифра максимальной скорости на спидометре «Запорожца» ?

В настоящее время практически все производители выпускают жесткие диски двух основных классов.
Это так называемые Desktop-диски, для настольных систем, и диски Enterprise, предназначенные для серверов и прочих критичных случаев. Кроме того, диски класса Enterprise также делятся на диски SATA (скорость оборотов 7200RPM) и SAS или FC (со скоростями вращения 10K и 15K RPM).

Надежность процесса передачи данных принято измерять параметром BER - Bit Error Rate(Ratio) . Это вероятность сбоя, из расчета некоего объема прочитанных головками диска бит.
Как правило, диски Desktop-class имеют указанную производителем величину BER равную 10^14 степени , постепенно для все больших дисков, в особенности новых серий, указывают величины надежности в 10^15. Это число означает, что производитель прогнозирует вероятность сбоя при чтении не хуже, чем одного сбойного бита на 10^14 степени прочитанных диском бит. Единица с 14 нулями. Сто тысяч миллиардов бит.
Цифра огромная, казалось бы. Но так ли велика она на самом деле?

Несложная математика уровня calc.exe говорит нам, что 10^14 бит это всего лишь около 11TB данных. Это означает, что производитель жестких дисков говорит нам таким образом, что считав с диска с параметром BER 10^14, то есть обычного, десктопного класса диска, примерно 11TB, мы, с точки зрения производителя, наверняка получим где-нибудь сбойный бит. По крайней мере он, производитель, на это у себя рассчитывает.
Сбойный бит чтения означает сбойный блок, размером 512 байт, на который он пришелся. И пошло-поехало.
11 терабайт это же уже и не так много?

И это не означает, что надо прочитать ровно 11TB, BER это только вероятность, которая стремится к 100% к 11-му терабайту. На меньших объемах она просто пропорционально уменьшается.
Да, диски с BER равным 10^15 имеют вероятность ошибки в 10 раз лучше (110TB считанного на один сбойный бит), но и это только временное улучшение. Как мы помним, емкость дисков удваивается с каждым новым поколением, то есть примерно каждые полтора-два года, растут и емкости RAID, а BER10^15 для SATA достигнут только в последний год-полтора.

Так, например, для 6-дискового RAID-5 с дисками 1TB величина отказа по причине BER оценивается в 4-5%, а для 4TB дисков она же будет достигать уже 16-20%.

Уровня 5 — это массив независимых дисков с распределенным хранением контрольных сумм.

Блоки данных и контрольные суммы по кругу записываются на все диски массива поэтому нет ассиметричности конфигурации дисков. Такая схема не требует специально выделенного диска для хранения информации о контрольных суммах.

Объём дискового массива RAID5 рассчитывается по формуле (n-1)*V.hdd , где n — число дисков в массиве, а V.hdd — размер наименьшего диска. Поэтому в случае построения RAID 5 все диски массива должны иметь одинаковый размер. При этом результирующая емкость дисковой подсистемы, доступной для записи, становится меньше ровно на один диск. Например, если пять дисков имеют размер 10 Гбайт, то фактический размер массива составляет 40 Гбайт, так как 10 Гбайт отводится на контрольную информацию.

RAID 5 как и RAID 4 имеет архитектуру независимого доступа. В сравнении с RAID 3 здесь предусмотрен большой размер логических блоков для хранения информации. Поэтому, как и в случае с RAID 4, основной выигрыш такой массив обеспечивает при одновременной обработке нескольких запросов. Резюмируя достоинства можно сказать следующее, - в RAID 5 на запись информации тратятся дополнительные вычилительные ресурсы и, как следствие, - падает производительность. Зато при чтении (по сравнению с отдельным HDD диском) имеется выигрыш производительности, ведь потоки данных с нескольких дисков массива обрабатываются параллельно.

Из недостатков следует отметить, что производительность RAID этого уровня снижается на 10-25% в сравнении с RAID 1 на операциях типа Random Write (записи в произвольном порядке), так как требует большего количества операций с дисками потому что каждая операция записи сервера заменяется на контроллере RAID на три - одну операцию чтения и две операции записи.

При выходе из строя одного из дисков катастрофически падает надежность массива до уровня RAID 0 (когда данные записываются последовательно на несколько дисков с нулевой избыточностью). При этом чем больше количество дисков в массиве тем ниже надежность, она снижается кратно количеству дисков. В этот момент система находится в критическом режиме т.к. все операции чтения и записи сопровождаются дополнительными манипуляциями. Если выходит из строя 2-ой диск или возникает простая ошибка чтения - массив разрушится и данные не удастся восстановить традиционными методами.

Следует учитывать также, что процесс восстановления данных после выхода из строя какого-либо диска массива вызывает интенсивную нагрузку чтения с дисков на протяжении длительного времени. Это может привести к выходу одного из дисков из строя в этот самый уязвимые период работы RAID, а также выявить ранее невыявленные сбои чтения в массивах малоактивных данных, что повышает риск сбоя при восстановлении целостности данных.

Минимальное количество дисков для организации RAID5 равно 3


И прочее, прочее, прочее, прочее. Так вот, сегодня поговорим про RAID массивах на их основе.

Как известно, эти самые жесткие диски так же имеют некий запас прочности после которого выходят из строя, а так же характеристики влияющие на производительность.

Как следствие, наверняка многие из Вас, так или иначе, однажды слышали о неких рейд-массивах, которые можно делать из обычных жестких дисков с целью ушустрения работы этих самых дисков и компьютера в целом или обеспечения повышенной надежности хранения данных.

Наверняка так же Вы знаете (а если и не знаете, то не беда) о том, что эти массивы имеют разные порядковые номера (0, 1, 2, 3, 4 и пр.), а так же выполняют вполне себе различные функции. Оное явление действительно имеет место быть в природе и, как Вы думаю уже догадались, как раз о этих самых RAID массивах я и хочу Вам рассказать в этой статье. Точнее уже рассказываю;)

Поехали.

Что такое RAID и зачем оно нужно?

RAID - это дисковый массив (т.е. комплекс или, если хотите, связка) из нескольких устройств, - жестких дисков. Как я и говорил выше, этот массив служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (или и то и другое).

Собственно, то чем именно занимается оная связка из дисков, т.е ускорением работы или повышением безопасности данных, - зависит от Вас, а точнее, от выбора текущей конфигурации рейда(ов). Разные типы этих конфигураций как раз и отмечаются разными номерами: 1, 2, 3, 4 и, соответственно, выполняют разные функции.

Просто, например, в случае построения 0 -вой версии (описание вариаций 0, 1, 2, 3 и пр., - читайте ниже) Вы получите ощутимый прирост производительности. Да и вообще жесткий диск нынче как раз таки узкий канал в быстродействии системы.

Почему так сложилось в общем и целом

Жесткие диски же растут разве что в объеме ибо скорость оборота головки оных (за исключением редких моделей типа Raptor "ов) замерла уже довольно давно на отметке в 7200 , кэш тоже не то чтобы растет, архитектура остается почти прежней.

В общем в плане производительности диски стоят на месте (ситуацию могут спасти разве что развивающиеся ), а ведь они играют весомую роль в работе системы и, местами, полновесных приложений.

В случае же построения единичного (в смысле за номером 1 ) рейда Вы чуток потеряете в производительности, но зато получите некую ощутимую гарантию безопасности Ваших данных, ибо оные будут полностью дублироваться и, собственно, даже в случае выхода из строя одного диска, - всё целиком и полностью будет находится на втором без всяких потерь.

В общем, повторюсь, рейды будут полезны всем и каждому. Я бы даже сказал, что обязательны:)

Что такое RAID в физическом смысле

Физически RAID -массив представляет собой от двух до n -го количества жестких дисков подключенных поддерживающей возможность создания RAID (или к соответствующему контроллеру, что реже ибо оные дороги для рядового пользователя (контроллеры обычно используются на серверах в силу повышенной надежности и производительности)), т.е. на глаз ничего внутри системника не изменяется, никаких лишних подключений или соединений дисков между собой или с чем-то еще попросту нет.

В общем в аппаратной части всё почти как всегда, а изменяется лишь программный подход, который, собственно, и задает, путем выбора типа рейда, как именно должны работать подключенные диски.

Программно же, в системе, после создания рейда, тоже не появляется никаких особенных причуд. По сути, вся разница в работе с рейдом заключается только в небольшой настройке , которая собственно организует рейд (см.ниже) и в использовании драйвера. В остальном ВСЁ совершенно тоже самое – в "Мой компьютер" те же C, D и прочие диски, всё те же папки, файлы.. В общем и программно, на глаз, полная идентичность.

Установка массива не представляет собой ничего сложного: просто берем мат.плату, которая поддерживает технологию RAID , берем два полностью идентичных, - это важно! , - как по характеристикам (размеру, кэшу, интерфейсу и пр) так и по производителю и модели, диска и подключаем их к оной мат.плате. Далее просто включаем компьютер, заходим в BIOS и выставляем параметр SATA Configuration : RAID .

После этого в процессе загрузки компьютера (как правило, до загрузки Windows ) появляется панель отображающая информацию о диска в рейде и вне него, где, собственно нужно нажать CTR-I , чтобы настроить рейд (добавить диски в него, удалить и тд и тп). Собственно, вот и все. Дальше идет и прочие радости жизни, т.е, опять же, всё как всегда.

Важное примечание, которое стоит помнить

При создании или удалении рейда (1 -го рейда это вроде не касается, но не факт) неизбежно удаляется вся информация с дисков, а посему просто проводить эксперимент, создавая и удаляя различные конфигурации, явно не стоит. Посему, перед созданием рейда предварительно сохраните всю нужную информацию (если она есть), а потом уже экспериментируйте.

Что до конфигураций.. Как я уже говорил, RAID массивов существует несколько видов (как минимум из основного базиса, - это RAID 1, RAID 2, RAID 3, RAID 4, RAID 5, RAID 6 ). Для начала я расскажу о двух, наиболее понятных и популярных среди обычных пользователей:

  • RAID 0 - дисковый массив для увеличения скорости\записи.
  • RAID 1 - зеркальный дисковый массив.

А в конце статьи быстренько пробегусь по прочим.

RAID 0 - что это и с чем его едят?

И так.. RAID 0 (он же, страйп («Striping»)) - используется от двух до четырех (больше, - реже) жестких дисков, которые совместно обрабатывают информацию, что повышает производительность. Чтобы было понятно, - таскать мешки одному человеку дольше и сложнее чем вчетвером (хотя мешки остаются все теми же по своим физ свойствам, меняются лишь мощности с ними взаимодействующие). Программно же, информация на рейде такого типа, разбивается на блоки данных и записывается на оба/несколько дисков поочередно.

Один блок данных на один диск, другой блок данных на другой и тд. Таким образом существенно повышается производительность (от количества дисков зависит кратность увеличения производительности, т.е 4-ые диска будут бегать шустрее чем два), но страдает безопасность данных на всём массиве. При выходе из строя любого из входящих в такой RAID винчестеров (т.е. жестких дисков) практически полностью и безвозвратно пропадает вся информация.

Почему? Дело в том, что каждый файл состоит из некоторого количества байт.. каждый из которых несет в себе информацию. Но в RAID 0 массиве байты одного файла могут быть расположены на нескольких дисках. Соответственно при "смерти" одного из дисков потеряется произвольное количество байтов файла и восстановить его будет просто невозможно. Но файл то не один.

В общем при использовании такого рейд-массива настоятельно рекомендуется делать постоянные ценной информации на внешний носитель. Рейд действительно обеспечивает ощутимую скорость - это я Вам говорю на собственном опыте, т.к у меня дома уже годами установлено такое счастье.

RAID 1 - что такое и с чем его едят?

Что же до RAID 1 (Mirroring - «зеркало»).. Собственно, начну с недостатка. В отличии от RAID 0 получается, что Вы как бы "теряете" объем второго жесткого диска (он используется для записи на него полной (байт в байт) копии первого жесткого диска в то время как RAID 0 это место полностью доступно).

Преимущество же, как Вы уже поняли, в том, что он имеет высокую надежность, т.е все работает (и все данные существуют в природе, а не исчезают с выходом из строя одного из устройств) до тех пор пока функционирует хотя бы один диск, т.е. если даже грубо вывести из строя один диск - Вы не потеряете ни байта информации, т.к. второй является чистой копией первого и заменяет его при выходе из строя. Такой рейд частенько используется в серверах в силу безумнейшей жизнеспособности данных, что важно.

При подобном подходе в жертву приносится производительность и, по личным ощущениям, оная даже меньше чем при использовании одного диска без всяких там рейдов. Впрочем, для некоторых надежность куда важнее производительности.

RAID 2, 3, 4, 5, 6 - что такое и с чем едят их?

Описание этих массивов тут по стольку по скольку, т.е. чисто для справки, да и то в сжатом (по сути описан только второй) виде. Почему так? Как минимум в силу низкой популярности этих массивов среди рядового (да и в общем-то любого другого) пользователя и, как следствие, малого опыта использования оных мною.

RAID 2 зарезервирован для массивов, которые применяют некий код Хемминга (не интересовался что это, посему рассказывать не буду). Принцип работы примерно такой: данные записываются на соответствующие устройства так же, как и в RAID 0 , т.е они разбиваются на небольшие блоки по всем дискам, которые участвуют в хранении информации.

Оставшиеся же (специально выделенные под оное) диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо винчестера из строя возможно восстановление информации. Тобишь в массивах такого типа диски делятся на две группы - для данных и для кодов коррекции ошибок

Например, у Вас два диска являют собой место под систему и файлы, а еще два будут полностью отведены под данные коррекции на случай выхода из строя первых двух дисков. По сути это что-то вроде нулевого рейда, только с возможностью хоть как-то спасти информацию в случае сбоев одного из винчестеров. Редкостно затратно, - четыре диска вместо двух с весьма спорным приростом безопасности.

RAID 3, 4, 5, 6 .. Про них, как бы странно это не звучало на страницах этого сайта, попробуйте почитать на Википедии. Дело в том, что я в жизни сталкивался с этими массивами крайне редко (разве что пятый попадался под руку чаще остальных) и описать доступными словами принципы их работы не могу, а перепечатывать статью, с выше предложенного ресурса решительно не желаю, как минимум, в силу наличия в оных зубодробительных формулировок, которые даже мне понятны со скрипом.

Какой RAID все же выбрать?

Если вы играете в игры, часто копируете музыку, фильмы, устанавливаете ёмкие ресурсопотребляющие программы, то Вам безусловно пригодиться RAID 0 . Но будьте внимательны при выборе жестких дисков, - в этом случае их качество особенно важно, - или же обязательно делайте бэкапы на внешний носитель.

Если же вы работаете с ценной информацией, которую потерять равносильно смерти, то Вам безусловно нужен RAID 1 - с ним потерять информацию крайне сложно.

Повторюсь, что очень желательно, чтобы диски устанавливаемые в RAID массив были пол идентичны. Размер, фирма, серия, объём кэша - всё, желательно, должно быть одинаковым.

Послесловие

Вот такие вот дела.

Кстати, как собрать это чудо я писал в статье: "Как создать RAID-массив штатными методами ", а про пару параметров в материале "RAID 0 из двух SSD, - практические тесты с Read Ahead и Read Cache ". Пользуйтесь поиском.

Искренне надеюсь, что эта статья Вам окажется полезной и Вы обязательно сделаете себе рейд того или иного типа. Поверьте, оное того стоит.

По вопросам создания и настройки оных, в общем-то, можете обращаться ко мне в комментариях, - попробую помочь (при наличии в сети инструкции к Вашей мат.плате). Так же буду рад любым дополнениям, пожеланиям, мыслям и всём таком прочем.

В последнее время в мировой компьютерной прессе стало появляться довольно много статей на тему: «Почему RAID-5 это плохо» (пример раз , два , и другие)

Постараюсь, без ныряния в инженерные и терминологические дебри объяснить, почему до сих пор RAID-5 вроде работал, а теперь вдруг перестал.

Емкость жестких дисков за последние несколько лет растет без особых тенденций к остановке. Однако, хотя емкость дисков чуть ли не удваивается каждый год, прирост их быстродействия, то есть скорости передачи данных, за тот же срок увеличивается всего в проценты. Да, действительно, на дисках появляются интерфейсы SATA, SATA-II, и ждем уже SATA-III, но стали ли диски быстрее работать, а не просто получили новый интерфейс с бубенчиками и новыми круглыми цифрами теоретических показателей вида "цифра максимальной скорости на спидометре «Запорожца» ?

В настоящее время практически все производители выпускают жесткие диски двух основных классов.
Это так называемые Desktop-диски, для настольных систем, и диски Enterprise, предназначенные для серверов и прочих критичных случаев. Кроме того, диски класса Enterprise также делятся на диски SATA (скорость оборотов 7200RPM) и SAS или FC (со скоростями вращения 10K и 15K RPM).

Надежность процесса передачи данных принято измерять параметром BER - Bit Error Rate(Ratio) . Это вероятность сбоя, из расчета некоего объема прочитанных головками диска бит.
Как правило, диски Desktop-class имеют указанную производителем величину BER равную 10^14 степени , постепенно для все больших дисков, в особенности новых серий, указывают величины надежности в 10^15. Это число означает, что производитель прогнозирует вероятность сбоя при чтении не хуже, чем одного сбойного бита на 10^14 степени прочитанных диском бит. Единица с 14 нулями. Сто тысяч миллиардов бит.
Цифра огромная, казалось бы. Но так ли велика она на самом деле?

Несложная математика уровня calc.exe говорит нам, что 10^14 бит это всего лишь около 11TB данных. Это означает, что производитель жестких дисков говорит нам таким образом, что считав с диска с параметром BER 10^14, то есть обычного, десктопного класса диска, примерно 11TB, мы, с точки зрения производителя, наверняка получим где-нибудь сбойный бит. По крайней мере он, производитель, на это у себя рассчитывает.
Сбойный бит чтения означает сбойный блок, размером 512 байт, на который он пришелся. И пошло-поехало.
11 терабайт это же уже и не так много?

И это не означает, что надо прочитать ровно 11TB, BER это только вероятность, которая стремится к 100% к 11-му терабайту. На меньших объемах она просто пропорционально уменьшается.
Да, диски с BER равным 10^15 имеют вероятность ошибки в 10 раз лучше (110TB считанного на один сбойный бит), но и это только временное улучшение. Как мы помним, емкость дисков удваивается с каждым новым поколением, то есть примерно каждые полтора-два года, растут и емкости RAID, а BER10^15 для SATA достигнут только в последний год-полтора.

Так, например, для 6-дискового RAID-5 с дисками 1TB величина отказа по причине BER оценивается в 4-5%, а для 4TB дисков она же будет достигать уже 16-20%.