Powerpoint трекеры солнечный. Как сделать поворотное устройство для солнечной панели: лучшие идеи

Это интерактивная статья, т.е. материалы в тему будут "из он-лайн выдачи гугла на момент написания"

Сегодня распространение фотомодулей, чаще называемых солнечными батареями идет семимильными шагами! Для примера в Западной Европе с 2% распространения 3 года назад солнечными панелями покрылось более 60% крыш в 2017 году! - Хотя водители(дальнобойщики и другие) убедительно говорят что почти все крыши домов покрылись например в Германии за последние два года - а два года назад они редкую крышу видели с этими элементами... И это только крыши - т.е. вряд ли все немцы и другие, экономящие свои площадя, не знают что стационарная установка солнечной панели дает на 30-40% меньше электроэнергии, чем "мобильная" - т.е. поворачиваемая за Солнцем. А поворачиваемая панель обычно с трудом устанавливается на крыше - если она сам по совместительству не является крышой какой нибудь теплицы-беседки(так просто идея, возможно уже реализованная) - чтобы забрать максимально всю мощь от Солнца ведь ей в день надо повернуться на 150 градусов, по другой оси менее существенно - в полгода на 55 градусов... Т.е. возможно лучший вариант для "трековых-мобильных" солнечных электростанций - это поле, огород, как например в этом видео:

Под перпендикулярными лучами Солнца фотомодули больше вырабатывают электричество на "минимум 30%", практики утверждают что на 50% больше и объясняют это следующим:

Стационарная панель ориентирована на полдень, т.е. в полдень перпендикулярна лучам, а с утра и к вечеру - всё ближе к наклонным лучам
- в Украине чаще дни когда в полдень облачно, а по утрам-вечерам - менее облачно или солнечно(видимо менее чем на 20% в году, но всё таки таких дней больше - а может это смотря в каком году...)
- если в полдень облачно, а утром-вечером солнечно, то ориентированная на полдень панель "лоханулась" со своей "сексуальной ориентацией))) - шутка"
- а не ошиблись кто в таком случае? - естественно те кто, кто "следит за солнцем" и их панели отобрали перпендикулярно солнечные лучи утром и вечером, а в обед работали так же как и их "стационарные коллеги" - в этом случае практики утверждают(и показывают это на видео), что прирост относительно стационаров минимум плюс 60%!!!, например этот опыт показан на этом видео:

Не будем сильно завышать "окупаемость трекера", допустим нам повезло, удался хороший год, с частой облачностью днем и солнечностью по утрам-вечерам и трекер дал прирост 40%.

Т.е. попроще, чтобы солнечный трекер себя окупил, затраты на него должны быть меньше чем 40% от солнечных панелей! И его надежность не уступала 25 летним гарантиям, обычно дающим на солнечные фотомодули!

Отвечает ли этим условиям солнечные системы слежения, предложенные на рынке Украины? Поехали в гугл и нашли следующее:

1. - Солнечный трекер ST1000 , Киев, для 1000Вт-ных панелей(видимо можно 4 260Вт-ки), цена от 300 долларов США. Непонятно что еще необходимо, чтобы этот трекер работал - что конкретно докупить к стационарному креплению, возможно трекер без привода - т.е. тогда явный лохотрон! Сегодня достать панели 260Вт-ки по 160 долларов не проблема, в итоге 1000Вт - от 640 долларов США, а 40% от этого - 250 долларов США, следовательно Солнечный трекер ST1000 может с трудом себя окупить...

2. - солнечный трекер ООО "ЭНЕРГОГАРАНТ" для 5кВт системы из 20 фотомодулей, 4500 долларов США. Серьезное что-то и видимо это уже полный комплект с креплением! Считаем - 20 панелей стоят от 3000 долларов США, солнечный трекер в полтора раза дороже! Ну это лохотрон - лохотронов!!! Неужели крепление так дорого!?

3. - Система ориентации солнечных батарей ST600 , описание здесь: greenchip.com.ua/26-0-401-0.html - в принципе неплохо, это та же фирма, что первая и по сравнению со вторым лохотроном, всё таки ближе к окупаемости! Цена - от 260 долларов, видимо можно "прилепить" две 300Вт-ные панели, пусть стоимостью от 500 долларов. Тут мы приблизительно так и имеем - по фото всё вроде включено, крепление панелей, слежение... какую-то опору всё равно придумать надо будет, но это же не проблема)

Как известно, КПД солнечной панели максимально при попадании на нее прямых солнечных лучей. Но т.к. солнце постоянно движется по горизонту, то КПД солнечных батарей сильно падает, когда солнечные лучи падают на панель под углом. Чтобы повысить КПД солнечных панелей, применяются системы следящие за солнцем и автоматически поворачивающие солнечную панель для попадания прямых лучей.
В данной статье представлена схема устройства слежения за солнцем или по другому трэкер (Solar Tracker).

Схема трэкера проста, компактна и вы легко сможете собрать ее своими руками. Для определения позиции солнца, используются два фоторезистора. Мотор включен по схеме H-моста (H-bridge), который позволяет коммутировать ток до 500 мА при напряжении питания 6-15В. В темноте, устройство также работоспособно и будет поворачивать моторчик на наиболее яркий источник света.

Принципиальная схема устройства слежения за солнцем

Как видно на рисунке ниже, схема проста до безобразия и содержит микросхему операционного усилителя LM1458 (К140УД20), транзисторы BD139 (КТ815Г, КТ961А) и BD140 (КТ814Г,КТ626В), фоторезисторы, диоды 1N4004 (КД243Г), резисторы и подстроечные резисторы.

Из схемы видно, что мотор М приводится в движение при разных значениях на выходах ОУ IC1a и IC1b. Таблица истинности:

* или наоборот, зависит от подключения мотора

Транзисторы в схеме работают в паре, по диагонали, коммутируя +Ve или -Ve к мотору, и заставляя его вращаться вперед или назад.

Во время остановки мотора, он продолжает вращаться, т.к. присутствует вращающийся момент. Вследствие этого, мотор какое-то время генерирует мощность, которая может вывести транзисторы из строя. Для защиты транзисторов от противоЭДС в схеме моста используется 4 диода.

Входной каскад состоит из двух ОУ (IC1) и фоторезисторов LDR и LDR". Если количество света, попадающее на них одинаково, то сопротивления фоторезисторов также равны. Следовательно, если напряжение питания 12В, то в месте соединения фоторезисторов LDR LDR" будет напряжение в 6В. Если количество света попадающего на один фоторезистор будет больше, чем на другом фоторезисторе, то напряжение будет изменяться.

Ограничения (лимиты) от +V до 0V устанавливаются четырьмя последовательно соединенными резисторами и подстраивается 2-мя подстроечными резисторами. Если напряжение выйдет за пределы этих ограничений, то ОУ запустит мотор и он постоянно будет вращаться.
Подстроечный резистор 20K регулируют чувствительность, т.е. диапазон между лимитами. Подстроечник 100К регулирует то, насколько лимиты будут симметричны относительно +V/2 (точка баланса).

Настройка схемы:
1. Проверьте напряжение источника питания схемы
2. Подключите двигатель пост. тока
3. Установите фоторезисторы рядом, чтобы на них попадало одинаковое количество света.
4. Полностью выкрутите оба подстроечный резистора против часовой стрелки
5. Подайте питание на схему. Моторчик закрутиться
6. Вращайте подстроечник 100К по часовой стрелке до тех пор, пока он не остановится. Отметьте эту позицию.
7. Продолжайте вращать подстроечник 100К по часовой стрелке до тех пор, пока мотор не начнет вращаться в другую сторону. Отметьте эту позицию.
8. Разделите угол между двумя позициями пополам и установите там подстроечник (это будет точка баланса).
9. Теперь, вращайте подстроечник 20К по часовой стрелке до тех пор, пока мотор не начнет дергаться
10. Немного верните положение подстроечника назад (против часовой стрелки), чтобы мотор остановился (данный подстроечник отвечает за чувствительность)
11. Проверьте корректность работы схемы, поочередно заслоняя от света один и второй фоторезисторы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Операционный усилитель

LM1458

1 Аналог: К140УД20 В блокнот
Биполярный транзистор

BD139

2 Аналоги: КТ815Г, КТ961А В блокнот
Биполярный транзистор

BD140

2 Аналоги: КТ814Г,КТ626В В блокнот
Выпрямительный диод

1N4004

4 Аналог: КД243Г В блокнот
Резистор 15 кОм 1 В блокнот
Резистор 47 кОм 1 В блокнот
Подстроечный резистор 100 кОм 1

При строительстве загородных домов, домиков на дачных участках, теплиц, различных фермерских построек все чаще стали применяться автономные системы электрообеспечения. Солнечные батареи обеспечивают независимость от общих электрических сетей. Да и в городах в частном секторе нередко можно увидеть на крышах домов солнечные панели домашних электростанций.

Эти панели могут быть с моно- и поликристаллическими кремниевыми структурами, могут быть построены на базе батарей, выполненных по аморфной или микроморфной технологии, могут быть даже использованы солнечные батареи, выполненные по технологии «Moth Eye» («Глаз мотылька»). При этом каждое здание строится таким образом, чтобы солнечные панели были установлены в месте, максимально освещаемом солнцем.

Эффективность современных гелиевых систем в среднем не превышает 18% - 20%. У лучших образцов эффективность может достигать 25%. В 2014 году ученые Австралийского центра UNSW по усовершенствованию фотовольтаики сообщили, что им удалось добиться эффективности солнечных батарей в 40%.

При этом нужно понимать, что измерение величины эффективности производится, когда гелиевая панель освещается солнцем под прямым углом. Если солнечная батарея закреплена стационарно, то в течение дня, когда солнце перемещается по небосводу, период прямого освещения батареи солнцем будет относительно небольшим. И поэтому эффективность даже самых совершенных солнечных панелей будет снижаться.

Для того чтобы минимизировать снижение эффективности гелиевых систем, солнечные панели должны устанавливаться на поворотных модулях, которые позволят в течение всего светового дня ориентировать батареи на солнце. Такое поворотное устройство, на котором закреплена несущая конструкция с одной или несколькими солнечными панелями, называется трекером.

Он предназначен для того, чтобы следить за солнцем, и, в зависимости от его положения, ориентировать на него солнечную панель. Это устройство, в зависимости от исполнения, включает в себя один или два датчика слежения за солнцем, а также поворотный механизм. Трекер должен быть установлен в хорошо освещаемом солнцем месте на земле, на стационарной станине, либо на мачте, которая поднимет трекер на такую высоту, чтобы солнечная батарея всегда была освещена солнцем.

Трекер с четырьмя солнечными панелями на мачте

Даже простейшее поворотное устройство с системой слежения за солнцем позволяет получить максимальный коэффициент полезного действия от гелиевых батарей. Как показали исследования, при отсутствии должной ориентации солнечных панелей на солнце теряется до 35% мощности. Поэтому, чтобы выйти на запланированную мощность в случае неподвижного крепления фотоэлементов, приходится устанавливать большее количество панелей.

Принцип построения систем управления поворотом солнечных батарей

Промышленностью выпускается несколько видов систем управления поворотом солнечных батарей. Это достаточно дорогие (до 100000 рублей) устройства, которые могут управлять положением сразу нескольких гелиевых панелей.

Поскольку солнце в течение дня перемещается не только по горизонтали, но и по вертикали, то эти системы управления отслеживают оба изменения положения и, в соответствии с полученной информацией, выдают команды на поворот панели вокруг горизонтальной или вертикальной осей. В общем случае такая система управления состоит из солнечного датчика, преобразователя (П) сигнала с этого датчика, усилителя (У) сигнала, микроконтроллера (МК), устройства управления двигателем (УУД), самого двигателя и, наконец, непосредственно рамы, на которой крепится гелиевая панель.


Схема управления трекера

Характерно, что для управления поворотом в обеих осях используется одна и та же схема. Различны только датчики положения солнца и двигатели. Простейший датчик положения солнца состоит из двух фотодиодов, разделенных непрозрачной перегородкой.

В зависимости от того, за каким перемещением следит этот датчик, перегородка устанавливается горизонтально или вертикально, но обязательно направлена строго на солнце. Пока оба фотодиода освещаются одинаково, сигналы, поступающие с них, равны. Как только солнце переместится настолько, что один из фотодиодов окажется в тени перегородки, происходит разбаланс сигналов и система управления вырабатывает соответствующую команду на поворот солнечной батареи.


Схема датчика положения солнца

В качестве двигателей для поворотной платформы используются, как правило, шаговые двигатели или реактивно-вентильные двигатели. В таких системах управления датчики слежения установлены на этой же платформе и поворачиваются вместе с нею, обеспечивая тем самым точную ориентацию гелиевой панели на солнце. Для надежной работы датчика необходимо предусмотреть защиту его от загрязнения, налипания снега, затенения оптики случайными предметами.

Существуют системы управления, в которых датчики слежения удалены от несущей поворотной платформы и находятся в месте, защищенном от подобных воздействий. В этом случае сигнал с датчиков поступает на сельсин-передатчик. Ориентируя датчик слежения на солнце, сельсин-передатчик передает управляющее воздействие на сельсин-приемник, который и поворачивает несущую платформу, направляя ее точно на солнце.

Система управления поворотом солнечных панелей на базе часового механизма

Промышленные установки – полностью укомплектованные гелиевые электростанции с двухосными поворотными модулями – достаточно дорогое удовольствие. Например, промышленный трекер UST-AADAT стоит порядка полутора миллионов рублей. Естественное желание всех владельцев солнечных электростанций – повысить выходную мощность, но при этом сократить расходы. В результате появились самодельные устройства, оригинальные по своему решению, в которых используются подручные материалы. И эти устройства вполне успешно управляют ориентацией панелей на солнце.

Один из вариантов такого устройства – система управления ориентацией гелиевых панелей, построенная на базе часового механизма. Для слежения за солнцем вовсе не обязательно использовать светоприемные устройства. Для этого достаточно взять обычные настенные механические часы. Подойдут даже старые ходики. Известно, что за один час солнце проходит по небосводу с востока на запад путь, соответствующий угловому перемещению на 15°. Поскольку для гелиевой панели такое угловое смещение не особенно критично, то достаточно включать поворотный механизм один раз в час.


Слежение за перемещением солнца по часам

Устройство для поворота гелиевой панели вокруг вертикальной оси может выглядеть следующим образом. В циферблате на расстоянии длины минутной стрелки от центра, в месте, соответствующем 12-ти часам, устанавливается неподвижный контакт. Подвижный контакт – на острие минутной стрелки.

Таким образом, каждые 60 минут будет происходить замыкание контактов и включаться двигатель, поворачивающий солнечную панель. Отключение двигателя можно организовать различными способами, например, конечным выключателем или реле времени. Если на циферблате установить еще один неподвижный контакт в месте, соответствующем 6-ти часам, то коррекция положения панели будет производиться через каждые полчаса.

В этом случае устройства отключения двигателя должны быть настроены на поворот несущей платформы на угол 7,5°.

Кроме того, при желании здесь же, на этом механизме, с помощью еще одной контактной группы, но уже на базе часовой стрелки можно собрать схему автоматического возврата солнечной панели в исходное положение. На базе этой же часовой стрелки можно собрать систему управления поворотом панели и вокруг горизонтальной оси. Пока часовая стрелка двигается до 12-ти часов, несущая рама поднимается вслед за солнцем. После 12-ти часов двигатель горизонтальной оси реверсируется, и солнечная панель начинает вращаться в обратном направлении.

Принцип водяных часов в системе управления поворотом солнечных панелей

Эта система была придумана девятнадцатилетней студенткой Иден Фулл из Канады. Она предназначена для управления одноосным трекером. Принцип работы следующий. Вращение производится вокруг горизонтальной оси. Солнечная панель устанавливается в начальное положение таким образом, чтобы солнечные лучи были перпендикулярны плоскости панели.

На одну сторону панели подвешивается емкость с водой, на противоположную сторону подвешивается груз, равновесный с емкостью, наполненной водой. В нижней части емкости проделывается небольшое отверстие, чтобы вода по каплям вытекала из этого сосуда. Размер этого отверстия подбирается экспериментально. По мере вытекания воды сосуд становится легче, и противовес медленно поворачивает раму с панелью.


Трекер на «водяных часах»

Подготовка трекера к работе заключается в том, что в опустевшую емкость заливается вода и солнечная панель устанавливается в исходное положение.

Эти два примера далеко не исчерпывают возможные варианты построения поворотных модулей. При небольшой фантазии можно получить простое, но очень эффективное устройство, которое гарантированно сможет повысить эффективность домашней гелиевой электростанции.

На европейской части России солнце, наконец, стало светить достаточно ярко и долго, чтобы иметь возможность поддерживать свою автономную систему без привлечения внешней энергетики- электросетей и генераторов. Но есть несколько хитростей, позволяющих при небольших модификациях уже имеющейся системы собрать немного больше энергии. Первая - слежение за солнцем, вторая - слежение за точкой максимальной мощности солнечных батарей. Начнем с первого и самого интересного - солнечного трекера.

«Мопед не мой», но для понимания принципа действия очень наглядно.

Указанный выше трекер можно даже приобрести на Ebay . Стоит он порядка 52 000 рублей на конец апреля 2015 года в России, а способен удержать всего пару панелей, суммарной мощностью до 600 Вт. И так как с окупаемостью солнечной энергетики вопрос стоит очень тяжело, то с добавлением в смету такого трекера солнечная энергетика будет окупаться довольно долго. Поэтому крайне велика популярность самодельных трекеров с различным управлением.

Следует сделать ремарку и оценить целесообразность монтажа солнечного трекера. Такое устройство позволяет увеличить выработку энергии при том же количестве солнечных панелей в 1,6 раза за счет более длительного воздействия солнца на панели и оптимального угла установки СП относительно солнца.

Стоит выделить основные задачи, которые придется решать при слежении за солнцем:
1. Создать достаточно крепкую платформу, которая будет не только выдерживать вес самих панелей, но и порывы ветра. Трекер с 4-6 и более панелями можно считать большим парусом.
2. Создать механику поворота тяжелой платформы с высокой парусностью.
3. Создать логику управления механикой, для слежения за солнцем.

Начнем с первого пункта. Целесообразно размещать массивы батарей таким образом, чтобы они не затеняли друг друга и крепились кратно необходимому напряжению.

Для такого трекера необходим мощный фундамент и крепкое железо. Из всех испытанных устройств, для управления поворотной платформой, лучше всего подходят актуаторы. Хорошо видна механика управления на следующем снимке.

Данный трекер позволяет управлять положением солнечных панелей в двух плоскостях. Впрочем, можно сделать управление только по горизонтали, а по вертикали менять угол пару раз в году (весной и осенью).

Что касается логики всей системы, то можно пойти несколькими путями:
1. Слежение за максимально яркой точкой
2. Поворот и наклон по таймеру (восход и заход солнца известны и постоянны для каждого дня)
3. Гибридный вариант, сочетающий постоянный угол поворота и поиск максимальной яркости

Первый способ можно реализовать самостоятельно или купить у китайцев готовый девайс. Первый для управления трекером в одной плоскости

Второй для управления трекером в двух плоскостях

Грубо говоря, для слежения за максимальной яркостью в одной точке китайцы хотят 100$. Понятно, что данные системы не представляют большой сложности для человека, разбирающегося в принципах работы контроллеров, поэтому аналогичную систему можно собрать в 10 раз дешевле.
Выглядеть это будет так

Ну а детали проекта и реализацию можно прочитать . Проект не мой, поэтому я не буду заниматься плагиатом.
Детальнее о самостоятельном изготовлении солнечного трекера можно почитать на профильном форуме , где опытным путем вычислили оптимальные конструкции и лучшее оборудование для выполнения этой задачи.

Слежение за точкой максимальной мощности солнечных батарей (MPPT)
Во второй части своего цикла я рассказывал про два различных типа солнечных контроллеров. MPPT (Maximum Power Point Tracking) контроллер тоже следит за солнцем, но с другой позиции всей системы. Для простого объяснения приведу график и после разъяснение.

На графике видно, что максимум снимаемой мощности можно получить при нахождении в точке максимальной мощности, которая неизменно будет на зеленой линии. Обычный ШИМ контроллер просто не может этого делать. Кроме того, MPPT контроллер позволяет подключать сборку последовательно соединенных солнечных панелей. Такой способ подключения заметно снижает потери энергии при транспортировке от солнечных батарей до аккумуляторов. Экономическая целесообразность приобретения MPPT контроллера появляется, если мощность установленных СП больше 300-400 Вт. Опираясь на свой опыт, могу сказать, что стоит приобретать солнечный контроллер «на вырост», если только сразу не создается мощная энергетическая система, которая с запасом перекрывает потребности дома. Методом последовательного наращивания количества солнечных батарей я пришел к мощности в 800 Вт - это не много, но этого вполне хватит для дачного дома в летний период, чтобы вообще не обращаться к электросетям. Согласно калькулятору моя энергосистема усредненно будет приносить с апреля по август по 4 кВт*ч электроэнергии в день. Если не пользоваться электроплитой и микроволновкой для приготовления пищи, то такого количества энергии хватит для комфортной жизни семье из 4 человек. Но есть еще мощный пожиратель электроэнергии в частном доме в виде бойлера для приготовления горячей воды. Для подогрева 80 литрового бойлера потребуется как раз около 4.5 кВт*ч электроэнергии. Таким образом, автономка должна окупаться хотя бы на нагреве воды или обслуживании других потребителей.
В прошлой статье я рассказал о гибридном инверторе, который может использовать энергию с приоритетом от солнечных батарей и лишь недостающее забирать из сети. Как это относится к солнечному контроллеру? Дело в том, что российская компания МикроАрт с недавнего времени начала выпускать собственные MPPT-контроллеры , которые могут быть связаны с инверторами этого же производителя по общей шине. Ну а поскольку гибридный инвертор у меня уже установлен, с новым сезоном я решил испытать новый контроллер.

Надо сказать, что выглядит он брутально относительно двух предыдущих контроллеров, которые я уже имею в своем хозяйстве. Металлический корпус, радиаторы по сторонам (китайские модели имеют радиаторы на задней стенке), темно-серый стальной корпус. В последнее время мне стало нравиться, что в моем хозяйстве контроллеры начинают «общаться» со мной на русском языке. Раньше были пиктограммы, цифры и английские надписи. Можно это считать капризом, но это приятно. Сравнивать в этой статье новый контроллер с предыдущими моделями я не буду, а вынесу тестирование с китайскими моделями в отдельный текст. Пожалуй, там же рассмотрю целесообразность приобретения более или менее мощного контроллера, особенности работы и надежность.
Самое большое достоинство этого контроллера для меня - это возможность подкачки нужного количества энергии, чтобы не происходило заимствование энергии от аккумулятора, которое снижает его ресурс. Из трех моделей, которые представлены производителем, я выбрал самый популярный и оптимальный по соотношению напряжение\ток - Контроллер ECO Энергия MPPT Pro 200/100 . Опираясь на характеристики устройства можно сказать, что контроллер поддерживает входное напряжение до 200 В и выходной ток до 100А. С учетом того, что моя сборка аккумуляторов на 24 В (поддерживается напряжение аккумуляторов 12/24/48/96 В), контроллер позволит выдать максимальную мощность в 2400 Вт, то есть у меня есть двукратный запас по наращиванию солнечных батарей. Максимальная же мощность контроллера составляет 11 кВт при 110В на аккумуляторах (буферное напряжение). Контроллер поддерживает связь с гибридным инвертором МАП SIN Энергия Pro HYBRID v.1 24В по шине I2C и может мгновенно добавлять мощности, когда инвертор выдает информацию о повышении потребления энергии. Взаимодействие двух устройств одной фирмы - это, как правило, система отработанная, поэтому все сводится к включению одного шнурка в нужные разъемы устройств и активации нужных параметров. Мне же было интересно заявление производителя этого контроллера о том, что данный MPPT-контроллер может так же мгновенно добавлять мощность при использовании инвертора любого другого производителя. Стало интересно, как это реализовано. Все оказалось крайне просто:


Датчик тока вешается на плюсовой провод, ведущий к инвертору (вот почему неважен производитель инвертора) и используя эффект Холла контроллер вычисляет потребляемую мощность. Тут уже вступает в работу логика самого солнечного контроллера и он подкачивает нужное количество энергии. Все известные мне контроллеры опираются на напряжение аккумулятора, и только учитывая его, повышают ток заряда.
Продолжая исследование возможностей контроллера, я столкнулся с тем, что он оснащен тремя реле, срабатывание которых можно запрограммировать. К примеру, при достаточно солнечной погоде и отсутствии потребления домом электроэнергии, можно начать подогрев дополнительного бойлера или бассейна. Рассмотрим и обратный вариант: солнца нет, напряжение аккумуляторов снизилось до критичного уровня, когда инвертор может просто отключиться, а потребление энергии продолжается. Тогда можно запустить отдельный бензо\дизель генератор, просто замкнув реле. Но для этого генератор должен иметь сухой контакт запуска или отдельную систему автоматического пуска или САП (также называется АВР - Автоматический Ввод Резерва). Поскольку у меня, как и у большинства дачников, имеется простой китайский генератор, но со стартером, я посмотрел в сторону автоматизации его запуска и обрадовался, узнав, что МикроАрт уже давно выпускает свою автоматику .
Вернемся к контроллеру. Его монтаж стандартен: сначала подключаются клеммы аккумулятора, потом подключаются клеммы солнечных батарей и производится настройка параметров. Подключив внешний датчик тока, можно наблюдать, какую мощность потребляет инвертор в режиме реального времени.
Итак, разматываем провода, монтируем контроллер и начинаем экономить. На следующей фотографии демонстрируется работа инвертора в гибридном режиме, когда только часть энергии потребляется от сети, а основная - от солнечных батарей.

Солнечный контроллер специально подключен через внешний датчик тока для демонстрации работы с любым другим инвертором, выпущенным сторонним производителем.

Итог
Солнечный контроллер соответствует заявленным характеристикам и действительно подкачивает энергию, даже буду подключенным к «чужому» инвертору посредством датчика тока. Гибридный инвертор действительно подкачивает в сеть энергию от солнечных батарей (на фотографии из 200 потребляемых Ватт половина, то есть 100 Вт поступает от солнца. Минимальные 100 Вт контроллер всегда будет забирать из сети, а остальное брать от солнца - это особенность работы устройства). Проще говоря, комплект с момента подключения начал себя окупать. К сожалению, весна резко сменилась метелью, и в ближайшее время вряд ли удастся наблюдать высокую эффективность комплекта (гибридный инвертор+солнечный контроллер), но с мая я рассчитываю на практически полное покрытие своих энергетических нужд за счет солнца.

Анонс
В следующей, заключительной статье, я сравню три имеющиеся у меня солнечных контроллера и постараюсь ответить на все вопросы, которые возникли за время этого цикла материалов. Если осталась нераскрытой какая-либо тема и она будет интересна большому количеству Хаброчитателей, тогда я постараюсь собраться и выдать отдельный материал. А теперь я готов отвечать на вопросы. Да прибудет с вами Сила Солнце!

Для начала, наверное, стоит рассказать, что в этой статье понимается под солнечным трекером. Коротко говоря, устройство представляет собой подвижную подставку под солнечную панель, нужную, чтобы в условиях наших умеренных широт панель собирала достаточное количество света, меняя своё положение вслед за солнцем.

В данном случае прототип солнечного трекера собирался на базе Arduino. Для вращения платформы в горизонтальной и вертикальной оси используются сервоприводы, угол поворота которых зависит от мощности падающего на фоторезисторы света. В качестве корпуса используется всеми любимый советский металлический конструктор.

Нелишним будет упомянуть, что всё это делалось как курсовой проект, поэтому я не стал заниматься приобретением и креплением собственно, самой солнечной панели и аккумулятора, так как их наличие не имеет отношения к работе трекера. В оправдание могу сказать, что возможности советского металлического конструктора необъятны, так что прикрутить к нему небольшую солнечную панель для зарядки телефона не составит особенного труда, если возникнет такое желание.

Итак, что использовалось при сборке:

  • Arduino MEGA 2560 R3
  • Сервопривод Tower SG90 - 2x
  • Фоторезистор MLG4416 (90mW; 5-10kOhm/1.0MOhm) - 4x
  • Звонок пьезоэлектрический KPR-G1750
  • Металлический конструктор
  • Резистор выводной 10 kOhm; 0,25W; 5% - 4x
  • Печатная макетная плата, корпус, шнуры для соединения
Mega использовалась исключительно по причине её наличия в шкафу на момент утверждения темы проекта, если учитывать покупку всех элементов с нуля, то в данном случае вполне себе хватит и Uno, но выйдет, конечно, дешевле.

Внезапно оказавшийся в списке спикер потребовался для пущего эффекта высокотехнологичности. Дело в том, что сервоприводы могут поворачиваться только на 180 градусов, да большего нам и не требуется, при учёте того, что следим мы за солнцем. Но при тестировании работы проекта, когда за солнцем в две минуты демонстрации особо не последишь, оказалось, что неплохо было бы сигнализировать, в какой момент стоит перестать размахивать фонариком, потому что сервопривод достиг мёртвой зоны. Для этого и был добавлен вышеупомянутый звонок.

Итак, начнём собирать трекер. Для начала разделим предстоящий фронт работ на условные четыре этапа: сборка подставки для солнечных панелей и крепление сервоприводов, крепление к собранной конструкции светочувствительных элементов, пайка и написание кода для Arduino.

Фигура первая: конструкторская

Путём интенсивного поиска была найдена парочка примеров конструкции подобных устройств. Наибольшего внимания удостоились два:
  • www.youtube.com/watch?v=SvKp3V9NHZY – победитель в номинации «Подача материала» проиграл в надёжности и практичности устройства: конструкция представляет собой соединение двух сервоприводов напрямую.
  • www.instructables.com/id/Simple-Dual-Axis-Solar-Tracker - собственно, отсюда и была взята основная идея моей конструкции, за исключением материала и общего внешнего вида поворотного корпуса.
Сборка из металлического конструктора была сопряжена с определёнными трудностями: пришлось подогнать дрелью отверстия для подключения сервоприводов, а также надёжно приклеить их к платформам в двух плоскостях. То, что получилось, показано на видео ниже.

Фигура вторая: схемотехническая

Главной задачей крепления фоторезисторов было даже не их подключение, а обеспечение разделения света для каждого из четырёх элементов. Понятно, что оставить их без каких-нибудь перегородок было нельзя, так как тогда значения, получаемые с фоторезисторов, были бы примерно одинаковы и поворота бы не получилось. Тут, к сожалению, возможности металлического конструктора подвели, главным образом из-за наличия во всех деталях отверстий. Найти подходящей металлической детали не получилось, поэтому мой солнечный трекер обзавёлся инновационной перегородкой из картона. Несмотря на достаточно убогонький вид, своё предназначение она выполняет отлично.

Фоторезисторы к корпусу прикреплены вполне надёжно, единственное, с чем стоило бы поработать – это с аккуратностью их расположения на платформе: сейчас они смотрят вверх недостаточно перпендикулярно, что может расстраивать перфекционистов и слегка портить точность поворота.

Немного схемотехники: подключение светочувствительных элементов осуществляется по схеме делителя напряжения, для чего потребовались указанные в списке элементов выводные резисторы. Все фоторезисторы припаяны к общему контакту, подключенному к пятивольтному выходу питания Arduino. Для удобства и эстетики ноги фоторезисторов припаяны к контактам двух трёхжильных изолированных проводов (один контакт остался неиспользуемым и спрятан). Все схемотехнические детали можно рассмотреть на схеме ниже.

Фигура третья: паяльная

Что-либо подробно описывать тут не несёт особого смысла, поэтому просто прилагаю фото используемых материалов и полученную в результате макетную плату.

Фигура четвёртая: с новым кодом!

Общий алгоритм работы заключается в обработке данных с фоторезисторов при помощи АЦП. Имеем 4 элемента, то есть 4 показания, находим среднее показание по левой стороне ((верхний левый + нижний левый) / 2), аналогично по правой, верхней и нижней сторонам. Если разница по модулю между левой и правой стороной больше порога, то осуществляем поворот в сторону с большим средним значением. Аналогично для верха и низа. Особые плюшки в коде: можно задавать вручную чувствительность срабатывания и максимальный и минимальный угол в двух плоскостях. Листинг рабочего кода приведён ниже.

Код

#include Servo horizontal; int servoh = 90; int servohLimitHigh = 180; int servohLimitLow = 0; Servo vertical; int servov = 45; int servovLimitHigh = 180; int servovLimitLow = 0; int ldrlt = A2; //LDR top left - BOTTOM LEFT int ldrrt = A3; //LDR top rigt - BOTTOM RIGHT int ldrld = A1; //LDR down left - TOP LEFT int ldrrd = A0; //ldr down rigt - TOP RIGHT int buzz_pin = 10; int buzz_tone = 20; int tol = 50; void setup() { Serial.begin(9600); pinMode(buzz_pin, OUTPUT); horizontal.attach(31); vertical.attach(30); horizontal.write(servoh); vertical.write(servov); } void loop() { int lt = analogRead(ldrlt); // top left int rt = analogRead(ldrrt); // top right int ld = analogRead(ldrld); // down left int rd = analogRead(ldrrd); // down rigt int avt = (lt + rt) / 2; // average value top int avd = (ld + rd) / 2; // average value down int avl = (lt + ld) / 2; // average value left int avr = (rt + rd) / 2; // average value right int dvert = abs(avt - avd); // check the diffirence of up and down int dhoriz = abs(avl - avr);// check the diffirence of left and right Serial.print("avt: "); Serial.print(avt); Serial.print(" "); Serial.print("avd: "); Serial.print(avd); Serial.print(" "); Serial.print("avl: "); Serial.print(avl); Serial.print(" "); Serial.print("avr: "); Serial.println(avr); Serial.print("h: "); Serial.print(servoh); Serial.print(" "); Serial.print("v: "); Serial.print(servov); Serial.print(" "); if (dhoriz > tol) { if (avl > avr) { if (servoh - 1 >= servohLimitLow) servoh--; else beep(150); } else if (avl < avr) { if (servoh + 1 <= servohLimitHigh) servoh++; else beep(150); } horizontal.write(servoh); } if (dvert > tol) { if (avt > avd) { if (servov + 1 <= servovLimitHigh) servov++; else beep(100); } else if (avt < avd) { if (servov - 1 >= servovLimitLow) servov--; else beep(100); } vertical.write(servov); } } void beep(unsigned char delayms){ analogWrite(buzz_pin, buzz_tone); delay(delayms); analogWrite(buzz_pin, 0); delay(delayms); }

Результат работы


Заключение – что бы я сейчас изменил в проекте

  1. Усовершенствование алгоритма работы: зависимость градуса поворота от разницы значений, получаемых с фоторезисторов, то есть поворот сразу на несколько градусов.
  2. Идеально перпендикулярное крепление фоторезисторов к платформе.
  3. Bluetooth для отсутствия проводов – конечно, идея неплоха, но потребует значительной доработки конструкции и приобретения второй ардуины.
  4. Использование сервоприводов с металлическими шестернями (надёжность и более уверенные повороты не помешают, особенно если таки добавить к конструкции солнечную панель и использовать её по назначению).