Микросхемы кмоп — идеальное семейство логических схем. Как устроен кмоп-транзистор

Интегральные микросхемы транзисторно-транзисторной логики представляют собой микросборки малой степени интеграции, построенные на биполярных транзисторах. Основным их минусом является малое количество на один кристалл, а также критичность к напряжению питания и достаточно большой ток потребления.

На схеме чуть выше изображен простой логический элементов - 3И – НЕ . В его основе лежит обычный биполярный многоэмиттерный транзистор VT1. Уровень логического нуля на его выходе появится в случае наличии высоких уровней на всех трех эмиттерах одновременно. VT2 берет на себя функцию инвертирования (элемент НЕ), а многоэмиттерный VT1 является логическим элементом 3И.

Несмотря на перечисленные минусы самая популярная серия ТТЛ, К155 пользуется огромной популярностью и сегодня, посмотрите сколько радиосамоделок можно собрать на .

Серия К155 является самой огромной серией ТТЛ. В ней более 100 микросборок выполняющих различные логические функции и операции (И, ИЛИ, НЕ, И – НЕ, ИЛИ – НЕ, триггеры, регистры, счётчики, сумматоры.

Уровень логической единицы в микросхемах этой ТТЛ серии лежит в диапазоне напряжений от 2,4 V до 5 V), а уровень логического нуля не более 0,4 V.

Почти все микросборки этой серии, выпускаются в стандартном 14 выводном корпусе. С точкой или выемкой ключа, обазначающей первый вывод. 7-й вывод это корпус или минус. 14 лежащий напротив первого, это плюс.

Следующим шагом в эволючии К155 стала серия К555, в которой базовый ТТЛ принцип сохранен, но в коллекторные переходы транзисторов добавлены . Поэтому К555 серию назвали ТТЛШ (ТТЛ и диод Шоттки). В ТТЛЩ потребляемая мощность снизилась где-то в 2 раза, а быстродействие резко возрасло.

Микросхемы КМОП

Буква К в начале аббревиатуры расшифровывается как - комплементарный . На практике это говорит о том, что в микросборке используются пары с одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой соответственно p-типа. Еще их называют CMOS (Complementary Metal-Oxide Semiconductor).

На рисунке приведен пример классического базового логического элемента НЕ. То есть если на вход придет единица, то на выходе будет уже логический ноль и наоборот.

Элемент 2И – НЕ . Из парочки этих логических элементов легко получить , а из нескольких триггеров - счетчик, регистр и элементарный запоминающие устройства.

И теперь о ложке дегтя: на максимальной рабочей частоте КМОП элементы заметно уступают другой логикой на биполярных транзисторах (ТТЛ) и они оффигенно чувствительны к статическому электричеству.


Микросхемы на основе КМДП структур

Цифровые ИМС на основе КМДП структур все шире используются при разработке разнообразных электронных схем, на что имеются весьма веские причины. КМДП ИМС - это в высшей степени универсальные и легко применяемые устройства, которые обладают уникальными свойствами, нехарактерными для других классов цифровых ИМС.

Комплементарными эти ИМС названы потому, что они изготовлены на основе КМДП транзисторов, т.е. на основе пар полевых транзисторов со структурой: металл - окисел(диэлектрик) - полупроводник, имеющих очень близкие характеристики и каналы разных типов проводимости. ИМС, построенные по такому принципу потребляют от источника питания существенно меньшую мощность, чем все другие ИМС и могут работать в более широком диапазоне уровней питающих напряжений. Электронные наручные часы и устройства для автомобиля, медицинские электронные приборы, телевизионные приемники, портативные калькуляторы - это лишь немногие примеры устройств, в которых используются КМДП ИМС.

Основные достоинства цифровых ИМС на КМОП-структурах - большое входное сопротивление транзисторов (R вх) 10 12 Ом) и высокий уровень интеграции. При выполнении импульсных устройств на интегральных логических элементах КМОП сопротивления времязадающих резисторов вследствие высоких входных сопротивлений транзисторов не ограничены сверху, следовательно, для получения импульсов с большой длительностью не следует увеличивать электрическую емкость времязадающих конденсаторов.

Комплементарные структуры представляют собой взаимодополняющие пары биполярных (p-n-p и n-p-n) или МДП (p-канальных и n-канальных) транзисторов, что позволяет значительно улучшить характеристики ИМС. Они изготавливаются на общей подложке в карманах, изолированных от подложки либо p-n -переходом, либо диэлектрической пленкой. Комплементарные транзисторы выполняются в виде горизонтальной и вертикальной структур.

В транзисторах горизонтальной структуры эмиттер, база, и коллектор расположены на одной горизонтальной плоскости, поэтому инжектированные в базу неосновные носители перемещаются не перпендикулярно поверхности кристалла, а вдоль нее. Такие транзисторы называются торцевыми (латеральными). При изготовлении торцевых

транзисторов p-n-p - типа формирование эмиттеров осуществляется во время базовой диффузии n-p-n - транзисторов. Затем путем второй базовой диффузии эмиттер p-n-p - транзистора окружается коллектором. Базой транзистора служит исходный слой полупроводника n-типа между этими областями. Ширина базы, следовательно, и значение коэффициента передачи тока базы и определяются расстоянием между окнами, протравливаемыми в фоторежиме для эмиттера и коллектора.

В вертикальных структурах база располагается под эмиттером (инжектированные неосновные носители перемещаются в направлении, перпендикулярном поверхности кристалла). Все три области p-n-p - транзистора (коллектор, база и эмиттер) формируются путем диффузии. Такие комплементарные структуры сложны в изготовлении из-за высоких требований точности концентрации легирующих примесей. Однако транзисторы, изготовленные по такой технологии, имеют больший, чем транзисторы с горизонтальной структурой козффициент передачи тока базы и и высокое напряжение пробоя коллекторного перехода.

Сокращение КМОП означает «комплементарный МОП-транзистор». Также иногда используется сокращение COSMOS, которое обозначает «комплементарная симметричная МОП-структура». Логические элементы этого подсемейства строятся как на «-канальных МОП-полевых транзисторах, так и на /^-канальных МОП-полевых транзисторах. Схемы этого подсемейства характеризуются ярко выраженной симметрией. При разработке схем применяют только самозапирающиеся МОП-транзисторы (см. Бойт, Электроника, ч. 2, разд. 8.2, МОП-полевые транзисторы).
Симметричность схем видна особенно хорошо в схеме элемента НЕ (рис. 6.91). Если на входе А действует Я-уровень, например +5 В, то транзистор Т2 отпирается. На его истоке и подложке 0 В. Напряжение затвор-исток UGS составляет +5 В. К истоку и подложке транзистора Тх приложены +5 В.

Если к управляющему электроду также прикладываются +5 В, то напряжение затвор-исток UGS = О В. Транзистор Тх заперт. Если Тх заперт, а Т2 открыт, то выход элемента Z имеет уровень L (рис. 6.92).
Если на входе А действует i-уровень О В, то транзистор Т2 запирается и напряжение затвор-исток UGS составляет О В. Напряжение затвор-исток транзистора Ту UGS = —5 В, так как напряжение истока +5 В, а затвора О В. Транзистор отпирается. Если Тх открыт, а Т2 заперт, выход элемента Z имеет уровень Н.
В КМОП-НЕ-элементе всегда один транзистор открыт, а другой заперт.
Если на выходе элемента НЕ действует уровень 0, то элемент практически не потребляет ток, так как Тх заперт. Если на выходе элемента НЕ действует уровень Н, то элемент также практически не потребляет ток, так как теперь Т2 заперт. Для управления последовательно включенными элементами также не требуется ток, так как полевые транзисторы практически не потребляют мощность. Только во время переключения от источника питания потребляется небольшой ток, так как оба транзистора одновременно, но недолго открыты. Один из транзисторов переходит из открытого состояния в запертое и еще не полностью заперт, а другой — из запертого в открытое и еще не полностью открыт. Также должны перезарядиться транзисторные емкости.
Все КМОП-элементы устроены так, что в токовой ветви один транзистор закрыт, а другой открыт. Энергопотребление КМОП-элементов крайне низко. Оно зависит в основном от количества переключений в секунду или частоты переключения.
КМОП-элементы отличаются малым энергопотреблением.
На рис. 6.93 изображена следующая типичная КМОП-схема. Если на обоих входах действует уровень L, то транзисторы 7’ и Т2 будут открыты, транзисторы Тг и Т4 заперты. Ту и Т2 при О В на А и В имеют UGS = — 5 В, а Т3 и Т4 имеют UGS = О В. На выходе Z действует уровень Н.
Если на входе А действует уровень Н(+5 В), а на входе 5-уровень L (О В), то Ту закрывается, а Т2 открывается. Путь от источника питания к выходу Z блокирован запертым транзистором.

Одновременно отпирается транзистор Т3 и на выходе Z действует примерно О В, то есть уровень L. Г4 заперт. Z всегда имеет уровень Z, если по крайней мере на одном входе действует уровень Н. Соответствующая схеме (рис. 6.93) рабочая таблица представлена на рис. 6.94. Схема производит при положительной логике операцию ИЛИ-НЕ.
Какую логическую операцию производит схема на рис. 6.95? Прежде всего для схемы должна быть составлена рабочая таблица. Если на обоих входах действуют Z-уровни (О В), то транзисторы Т{ и Т2 открываются (UGS = — 5 В). Транзисторы Т3 и Г4 закрываются (UGS = О В). На выходе Л-уровень.
Если на обоих входах действуют #-уровни (+5 В), то транзисторы Тъ и Т4 открываются, а транзисторы Тх и Т2 закрываются. На выходе Z будет действовать Z-уровень.
Если на один вход приложен Я-уровень, а на другой — Z-уровень, то один из верхних транзисторов на рис. 6.95 (7^ или Т2) открывается. Один из нижних (Т3 или Г4) запирается. Через открытые транзисторы к выходу будет прикладываться if-уровень. На рис. 6.96 представлена соответствующая таблица истинности. Схема выполняет при положительной логике функцию И-НЕ.

КМОП-элементы производятся в основном в виде элементов И-НЕ и ИЛИ-НЕ.
Особым элементом подсемейства КМОП является передаточный элемент. Он состоит из параллельного включенных и-канального МОП-транзистора и ^-канального МОП-транзистора (рис. 6.97).
Передаточный элемент работает как переключатель.
Если к Gx будет приложен уровень Н (например +5 В) и к G2 — уровень L (О В), то оба транзистора запираются. В /ьканальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Образование проводящего канала между истоком и стоком становится невозможным. Также и в я-канальном МОП-транзисторе между управляющим электродом и подложкой приложено напряжение О В. Здесь также не может возникнуть проводящий канал. Сопротивление между точками А и Zдостигает нескольких сотен МОм.
Если на <7, действует уровень L (О В), а на G2 — уровень Н (+5 В), то напряжение затвора /^-канального МОП-транзистора относительно подложки будет —5 В. Напряжение затвора и-канального МОП-транзистора относительно подложки +5 В. При этих напряжениях образуются проводящие каналы между истоком и стоком. Канал между А и Z будет низкоомным (примерно от 200 Ом до 400 Ом). Рабочая таблица представлена на рис. 6.98.
Уровни на входах Gl и G2 всегда прикладываются в противофазе. Управление может происходить с помощью элемента НЕ (рис. 6.99). Получается двунаправленный ключ. У полевых транзисторов передаточного элемента исток и сток могут взаимно менять свои функции. Поэтому вывод затвора обозначается в середине его условной линии (рис. 6.99).
Интегрированные КМОП-микросхемы всегда содержат множество логических элементов, которые могут быть использованы по отдельности или как единая сложная логическая функция. На рис. 6.100 показана структура схемы CD 4000 А. Эта схема содержит два элемента ИЛИ-HE с тремя входами каждый и элемент НЕ. Схема CD 4012 А (рис. 6.101) содержит два элемента И-НЕ с четырьмя входами каждый.
Интегральные схемы арифметических логических устройств содержат очень много КМОП-элементов. На рис. 6.102 приведена схема 4-битного сдвигающего регистра. Эта схема рассмотрена подробно в гл. 8.

Рис. 6.102. Схема КМОП-4-битного сдвигового регистра CD 4015 A (RCA)

Микросхема CD 4008 А является 4-битным полным сумматором. Полные сумматоры рассматриваются подробно в гл. 10. Схема приведена здесь как пример КМОП-схемотехники (рис. 6.103).
Интегральные микросхемы в КМОП-исполнении могут производиться с очень большой плотностью элементов,
Можно схему целого калькулятора уместить в одной микросхеме. Дальнейшее совершенствование технологий ведет к повышению возможной плотности компоновки.
Напряжение питания КМОП-элементов может колебаться в широком диапазоне.
Для серии CD-4000-A (рис. 6.100—6.103) фирма-производитель RCA указывает диапазон напряжений питания от 3 В до 15 В. Типичные передаточные характеристики при ряде напряжений питания показаны на рис. 6.104.
Часто используются напряжения питания +5 В и +10 В. Для этих напряжений питания на рис. 6.105 и 6.106 показаны диаграммы уровней. Для больших напряжений питания характерна лучшая помехоустойчивость.
Разность между уровнями L и Н, отвечающая за помехоустойчивость, для КМОП-схем составляет примерно от 30% до 40% напряжения питания.
В следующей таблице приведены важнейшие параметры КМОП-эле-ментов:

Рис. 6.103. Схема КМОП-4-битного полного сумматора CD 4008 A (RCA)

КМОП(комплементарная структура металл-оксид-полупроводник)- технология построения электронных схем. В более общем случае - КМДП (со структурой металл-диэлектрик-полупроводник). Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний)

Подавляющее большинство современных логических микросхем, в том числе процессоров, используют схемотехнику КМОП. В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости.

В устройствах на микросхемах КМОП вполне применимы меры по борьбе с дребезгом, известные из опыта работы с микросхемами ТТЛ, например, включение статического триггера на двух элементах И-НЕ или ИЛИ-НЕ. Однако чрезвычайно высокое входное сопротивление микросхем КМОП (порядка сотен и тысяч мегаом) и относительно высокое выходное сопротивление (сотни ом - один килоом) позволяет упростить цепи подавления дребезга, исключив резисторы. Вариантом схемы является устройство, собранное всего лишь на одном неинвертирующем логическом элементе.

Здесь следует сказать несколько слов о неинвертирующих логических элементах серий КМОП. Большинство логических элементов этих серий являются инвертирующими. Как указывалось выше, микросхемы, содержащие в своем обозначении буквы «ПУ», служат для согласования микросхем КМОП с микросхемами ТТЛ. По этой причине их выходные токи при подаче на их выходы напряжения питания или соединении выходов с общим проводом в устройстве по схемам могут достигать многих десятков миллиампер, что отрицательно сказывается на надежности устройств и может служить мощным источником помех. Большое входное сопротивление микросхем КМОП позволяет в некоторых случаях обойтись вообще без активных элементов для подавления дребезга.



Наиболее перспективны серии, выполненные на комплементарных МОП-транзисторах (КМОП) (К176, К564 и др.). В них отсутствуют нагрузочные резисторы, а МОП-транзисторы с разной электропроводностью каналов выполняют роль ключей. При напряжении на затворах, большем порогового, для транзисторов с каналом определенного типа соответствующий транзистор отперт, а другой заперт. При другом значении большем порогового для транзисторов с электропроводностью противоположного типа отпертый и запертый транзисторы меняются местами. Такие структуры успешно работают при изменении в широких пределах напряжения источника питания (от 3 до 15 В), что недостижимо для логических элементов, в состав которых входят резисторы. В статическом режиме при большом сопротивлении нагрузки логические элементы КМОП практически не потребляют мощности.

Для них также характерны: стабильность уровней входного сигнала и малое его отличие от напряжений источника питания; высокое входное и небольшое выходное сопротивления; хорошая помехоустойчивость; легкость согласования с микросхемами других серий.

Логические элементы КМОП, выполняющие функцию 3 И-НЕ. В нем использованы транзисторы с индуцированным каналом. Транзисторы VT1-VT3 имеют канал -типа и открыты при напряжении затворов, близких к нулю. Транзисторы имеют канал -типа и открыты при напряжениях затворов, больших порогового значения.

При нулевом входном сигнале хотя бы на одном из входов логического элемента один из транзисторов открыт и выходное напряжение равное Е. И только в том случае, если на всех входах есть сигнал логической единицы (обычно равный Е), все транзисторы VT1 - закрыты, а ярусно включенные транзисторы открыты. Выходное напряжение равно потенциалу общей шины (логический 0). Таким образом, сочетание ярусного включения транзисторов с каналами, имеющими один тип электропроводности, и параллельного соединения транзисторов с каналами другого типа электропроводности позволили реализовать функцию И-НЕ.

Если группы ярусно и параллельно включенных транзисторов поменять местами, то будет реализован элемент, выполняющий функцию. Он работает аналогично предыдущему. Транзисторы открыты в том случае, если на их затворах логическая 1, и заперты при входных сигналах логического 0.

Из рассмотренных схем видно, что в статическом режиме один из транзисторов, включенных последовательно, всегда закрыт, а другой открыт. Так как закрытый транзистор имеет большое сопротивление, то ток в цепи определяется только малыми значениями токов утечек и микросхема практически не потребляет электрическую мощность.

В качестве базового инвертора, устанавливаемого на входе ЛЭ, обычно используется цепь. Для предотвращения пробоя пленки оксида под затворами МОП-транзисторов схему инвертора обычно дополняют диодами, выполняющими защитные функции. Постоянная времени этих компонентов около 10 не. Поэтому их введение существенно не меняет динамические характеристики логических элементов. При попадании в цепь входа статических напряжений той или иной полярности соответствующие диоды открываются и закорачивают на цепь источника питания источник статического заряда. Резистор, который вместе с барьерными емкостями диодов образует интегрирующую цепь, уменьшает скорость увеличения напряжения на затворе до значения, при котором диоды VD2, VD3 успевают открыться.

Если источник напряжения имеет малое внутреннее сопротивление, то через диод при потечет большой прямой ток. Поэтому при включении аппаратуры с подобными логическими элементами напряжение питания должно подаваться раньше входного сигнала, а при выключении - наоборот. В тех случаях, когда допустимо некоторое снижение быстродействия, в цепь входа можно включать резисторы, ограничивающие входной ток на уровне.

В ряде микросхем для увеличения крутизны передаточной функции и повышения нагрузочной способности к выходу инвертора логического элемента подключают один или два дополнительных инвертора. Транзисторы дополнительного инвертора имеют повышенную мощность. За счет них обеспечивается уменьшение сопротивлений каналов открытых выходных транзисторов инвертора с кОм до кОм. Эти значения выходных сопротивлений позволяют не вводить в выходные цепи токоограничивающие резисторы, защищающие от короткого замыкания на выходе.

В логических элементах КМОП предельно просто реализуют элементы с тремя устойчивыми состояниями. Для этого последовательно с транзисторами инвертора включают два комплементарных транзистора,управляемых инверсными сигналами. Если при подаче сигналов транзисторы закрыты, то выходное сопротивление инвертора имеет большое значение (инвертор находится в третьем высокоимпедансном состоянии).

Третье состояние имеется у отдельных микросхем, например у логических элементов типа, а также у сложных функциональных узлов серий КМОП.

Согласование логических элементов ТТЛ с логическими элементами КМОП можно выполнить несколькими способами:

1) питать логические элементы КМОП малыми напряжениями, при которых сигналы логических элементов ТТЛ переключают транзисторы логических элементов КМОП;

2) использовать логические элементы ТТЛ с открытым коллектором, в цепь выхода которых включен резистор, подключенный к дополнительному источнику напряжения;

3) применять микросхемы преобразователей уровня при согласовании серий КМОП с сериями ТТЛ и при согласовании серий ТТЛ с сериями КМОП).

При необходимости увеличить выходную мощность допускается параллельное соединение нескольких микросхем. Для подавления помех по цепи питания между шинами питания включают электролитический конденсатор емкостью и параллельно ему керамические конденсаторы емкостью на корпус. Последние подключают непосредственно к выходам микросхем. Емкость нагрузки, как правило, не должна превышать. При большем значении емкости нагрузки последовательно с выходом устанавливают дополнительный резистор, ограничивающий ток ее переразрядки. При наличии выбросов напряжения во входном сигнале последовательно с входом ЛЭ можно включить ограничительный резистор номиналом до 10 кОм. Неиспользованные входы ЛЭ следует обязательно подключать к шинам источника питания или соединять параллельно с подключенными входами. В противном случае возможны пробои диэлектрика под затвором и нарушение работоспособности вследствие сильного влияния помех.

Допускается кратковременное замыкание накоротко выходных зажимов микросхем при малом напряжении питания.

При хранении и монтаже следует опасаться статического электричества. Поэтому при хранении выводы электрически замыкают между собой. Монтаж их проводится при выключенном напряжении питания, причем обязательно использование браслетов, с помощью которых тело электромонтажников соединяется с землей.

Логические элементы КМОП-серий широко применяются при построении экономичных цифровых устройств малого и среднего быстродействия. В дальнейшем по мере усовершенствования технологии их изготовления они могут составить конкуренцию для логических элементов ТТЛ при создании быстродействующих устройств.

Обычно при конструировании пробников и калибраторов используют генераторы коротких импульсов, вырабатывающие сигнал с широким и равномерным спектром. Такой сигнал позволяет быстро проверять каскады радиоаппаратуры, как низкочастотные (НЧ), так и высокочастотные (ВЧ). Причем чем меньше длительность импульсов, тем лучше - спектр получается шире и равномернее.

Как правило, подобные генераторы состоят из двух основных узлов: собственно генератор прямоугольных импульсов и формирователь коротких импульсов. Между тем можно обойтись без специального формирователя, поскольку он уже имеется в логическом элементе микросхемы структуры КМОП.

Рассмотрим схему

Рисунок 4- RC- генератор

На рисунке 4 показан известный RC-генератор, работающий в данном случае на частоте около 1000 Гц (она зависит от номиналов деталей R1, С1). Низкочастотный сигнал прямоугольной формы поступает с выхода элемента DD1.2 (вывод 4) через цепочку R2C3 на переменный резистор R4 - им плавно регулируют амплитуду сигнала, подаваемого на проверяемый узел.

Выход же высокочастотного сигнала (коротких импульсов) выполнен несколько необычно - сигнал снимают с переменного резистора R3, включенного в цепь питания микросхемы. Перемещением движка этого резистора плавно регулируют уровень выходного высокочастотного сигнала.

Рассмотрим принцип работы такого формирователя по упрощенной схеме логического элемента структуры КМОП, показанного на рисунке 5.

Рисунок 5-упрощенная схема логического элемента структуры КМОП

Его основа - два последовательно включенных полевых транзистора с изолированным затвором и разным типом проводимости каналов. Если последовательно с транзисторами включить резистор R1, а на вход элемента подавать прямоугольные импульсы U1, произойдет следующее (рис. 3). Из-за того, что длительность фронта импульса не может быть бесконечно малой, а также из-за инерционности транзисторов, в момент действия фронта наступит такой момент, когда оба транзистора окажутся в открытом состоянии. Через них потечет так называемый сквозной ток, значение которого может составлять от единиц до десятков миллиампер в зависимости от типа микросхемы и напряжения источника питания. На резисторе будут формироваться короткие импульсы напряжения U2. Причем как в момент действия фронта, так и спада.

Иначе говоря, произойдет удвоение частоты исходных импульсов.

Сопротивление резистора не должно быть большим во избежание нарушения режима работы элементов микросхемы. Это означает, что к высокочастотному выходу можно подключать низкоомную нагрузку сопротивлением 50...75 Ом.

У рассмотренного генератора максимальная амплитуда импульсов на высокочастотном выходе составляет 100...150мВ, а потребляемый от источника питания ток не превышает 1,6 мА. Генератор рассчитан на использование при проверке усилителей ЗЧ, трехпрограммных громкоговорителей, радиоприемников на диапазонах ДВ и СВ.

структуры КМОП

Полевой транзистор - полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком.

Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным.

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Полевой транзистор с управляющим p-n-переходом - это полевой транзистор, в котором пластина из полупроводника, например n-типа, имеет на противоположных концах электроды (сток и исток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в данном случае p-типом.

Источник питания, включенный во входную цепь, создаёт на единственном p-n-переходе обратное напряжение. Во входную цепь также включается и источник усиливаемых колебаний. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя (n-канал), то есть площадь поперечного сечения области, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов; как следствие, КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

Комплементарная МОП логика (КМОП - КМДП -CMOS - Complementary Metal-Oxide-Semiconductor) сегодня является основной в производстве больших интегральных схем микропроцессорных комплектов, микроконтроллеров, СБИС персональных компьютеров, ИС памяти. Кроме ИС высокой интеграции для создания электронного обрамления БИС и несложных электронных схем выпущено несколько поколений КМОП серий малой и средней интеграции. В основе лежит рассмотренный ранее инвертор (рис 2.9) на комплементарных (взаимодополняющих) МОП транзисторах с индуцированным каналом разной проводимости p и n типа, выполненных на общей подложке (входные охранные цепочки не показаны).

Рис 3.8. Двухвходовые КМОП логические элементы а) И-НЕ, б) ИЛИ-НЕ

Как и в случае простого инвертора, особенностью ЛЭ является наличие двух ярусов транзисторов относительно выходного вывода. Логическая функция, выполняемая всей схемой, определяется транзисторами нижнего яруса. Для реализации И-НЕ в положительной логике транзисторы с n-каналом включаются последовательно друг с другом, с p-каналом – параллельно, а для реализации ИЛИ-НЕ – наоборот (Рис 3.8).

Микросхемы КМОП-структуры близки к идеальным ключам: в статическом режиме они практически не потребляют мощности, имеют большое входное и малое входное сопротивления, высокую помехозащищенность, большую нагрузочную способность, хорошую температурную стабильность, устойчиво работают в широком диапазоне питающих напряжений (от +3 до +15 В). Выходной сигнал практически равен напряжению источника питания. При Еп=+5В обеспечивается совместимость логических уровней со стандартной ТТЛ/ТТЛШ-логикой. Пороговое напряжение при любом напряжении питания равно половине напряжения питания U пор = 0,5 Еп, что обеспечивает высокую помехоустойчивость.

Логические элементы с большим числом входов организованы подобным же образом. В номенклатуре микросхем КМОП есть ЛЭ И, ИЛИ, И-НЕ, ИЛИ-НЕ, И-ИЛИ-НЕ, с количеством входов до 8. Увеличить число входных переменных можно с помощью дополнительных логических элементов, принадлежащих к той же серии ИС.

Отечественная промышленность выпускает несколько универсальных КМОП серий: К164, К176, К561, К564, К1561, К1564.

К176 – стандартная КМОП t з =200 нс, I пот £100 мкА

К564, К561, К1561 – усовершенствованная КМОП t з =15 нс (15 В), I пот =1-100 мкА

К1564 – высокоскоростная КМОП (функциональный аналог серии 54HC) t з =9-15 нс, Uпит=2-6 В, I пот £10 мкА

Основные технические характеристики ИС серии К564 (К561) приведены ниже:

Напряжение питания U п, В …………………………..3-15

Мощность потребления

В статическом режиме, мкВт/корпус …………0,1

При f=1 МГц, U п =10 В, С н =50 пф, мвт ……….20

Допустимая мощность рассеивания. Мвт/корпус …..500

Входное напряжение, В ……………….от -0,5В до U п + 0,5В

Выходное напряжение, В

Низкого уровня ………………………… не более 0,05В,

Высокого уровня …………………не менее U п + 0,5В

Средняя задержка распространения сигнала при С н =15 нф

Для U п =+5 В, нс ………………………………50

Для U п =+10 В, нс ……………………………..20,

Рабочая температура, 0 С

Серия 564 ………………………..от -60 до +125

Серия К561 ……………………….от -40 до +85

Если развитие ТТЛ-серий, главным образом, шло в сторону уменьшения энергопотребления, то КМОП-серии развивались в направлении повышения быстродействия. В конце концов, победила КМОП-технология. Последующие поколения стандартной логики выпускаются уже только по ней. Таким образом, второе поколение микросхем стандартной логики выпускается по КМОП-технологии, но сохраняет полное функциональное соответствие с ТТЛ-сериями.

Лекция. Изготовление процессоров

Микропроцессор - это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником - тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов , соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. Так формируются внутренние шины. В результате микропроцессор выполняет множество функций – от математических и логических операций до управления работой других микросхем и всего компьютера.

Один из главных параметров работы микпроцессора – частота работы кристалла, определяющая количество операций за единицу времени, частота работы системной шины, объем внутренней кэш-памяти SRAM. По частоте работы кристалла маркируют процессор. Частота работы кристалла определяется частотой переключений транзисторов из закрытого состояния в открытое. Возможность транзистора переключаться быстрее определяется технологией производства кремниевых пластин, из которых делаются чипы. Размерность технологического процесса определяет размеры транзистора (его толщину и длину затвора).

Как делают микросхемы

Как известно из школьного курса физики, в современной электронике основными компонентами интегральных микросхем являются полупроводники p-типа и n-типа (в зависимости от типа проводимости). Полупроводник - это вещество, по проводимости превосходящее диэлектрики, но уступающее металлам. Основой полупроводников обоих типов может служить кремний (Si), который в чистом виде (так называемый собственный полупроводник) плохо проводит электрический ток, однако добавление (внедрение) в кремний определенной примеси позволяет радикально изменить его проводящие свойства. Существует два типа примеси: донорная и акцепторная .



Донорная примесь приводит к образованию полупроводников n-типа c электронным типом проводимости, а акцепторная - к образованию полупроводников p-типа с дырочным типом проводимости. Контакты p- и n-полупроводников позволяют формировать транзисторы - основные структурные элементы современных микросхем. Такие транзисторы, называемые КМОП-транзисторами, могут находиться в двух основных состояниях: открытом, когда они проводят электрический ток, и запертом - при этом они электрический ток не проводят. Поскольку КМОП-транзисторы являются основными элементами современных микросхем, поговорим о них подробнее.

Говоря о процессорах Intel, часто используют такие специфические понятия, как 0,13-микронный технологический процесс, а в последнее время - 90-нанометровый технологический процесс. К примеру, принято говорить, что новый процессор Intel Pentium 4 с ядром Northwood выполнен по 0,13-микронной технологии, а будущее поколение процессоров будет основано на 90-нанометровом технологическом процессе. В чем же разница между этими технологическими процессами и как она отражается на возможностях самих процессоров?

Как устроен КМОП-транзистор

Простейший КМОП-транзистор n-типа имеет три электрода: исток, затвор и сток . Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью, а в областях стока и истока формируются полупроводники n-типов с электронной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов). В обычном состоянии, то есть когда к затвору не прикладывается напряжение, транзистор находится в «запертом» состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом мы не принимаем во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал (рис. 1), то ситуация в корне изменится.

Рис. 1. Принцип работы КМОП-транзистора

Под воздействием электрического поля затвора дырки выталкиваются в глубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток - говорят, что транзистор «открывается». Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть «запирается». Таким образом, меняя напряжение на затворе, можно открывать или запирать транзистор, аналогично тому, как можно включать или выключать обычный тумблер, управляя прохождением тока по цепи. Именно поэтому транзисторы иногда называют электронными переключателями. Однако, в отличие от обычных механических переключателей, КМОП-транзисторы практически безынерционны и способны переходить из открытого в запертое состояние триллионы раз в секунду! Именно этой характеристикой, то есть способностью мгновенного переключения, и определяется в конечном счете быстродействие процессора, который состоит из десятков миллионов таких простейших транзисторов.

Итак, современная интегральная микросхема состоит из десятков миллионов простейших КМОП-транзисторов.

Вот изображение поперечного сечения процессора:

Сверху находится защитная металлическая крышка, которая помимо защитной функции, так же выполняет роль теплораспределителя – именно ее мы обильно мажем термопастой, когда устанавливаем кулер. Под теплораспределителем находится тот самый кусочек кремния, который выполняет все пользовательские задачи. Еще ниже – специальная подложка, которая нужна для разводки контактов (и увеличения площади «ножек»), чтобы процессор можно было установить в сокет материнской платы.

Сам чип состоит из кремния, на котором находится до 9 слоев металлизации (из меди) – именно столько уровней нужно, чтобы по определенному закону можно было соединить транзисторы, находящиеся на поверхности кремния (так как сделать все это на одном уровне просто невозможно). По сути, эти слои выполняют роль соединительных проводов, только в гораздо меньшем масштабе; чтобы «провода» не закорачивали друг друга, их разделяют слоем оксида (с низкой диэлектрической проницаемостью).

Остановимся более подробно на процессе изготовления микросхем, первый этап которого - получение кремниевых подложек.

Шаг 1. Выращивание болванок

Шаг 2. Нанесение защитной пленки диэлектрика (SiO2)

Шаг 3. Нанесение фоторезистива

Шаг 4. Литография

Шаг 5. Травление

Шаг 6. Диффузия (ионная имплантация)

Шаг 7. Напыление и осаждение

Шаг 8. Заключительный этап

Перспективные технологии