Схемы генераторов высокой частоты. Высокочастотный генератор: обзор, особенности,виды и характеристики


Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков:)

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера (DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Предлагаемый генератор работает в диапазоне частот от 26560 кГц до 27620 кГц и предназначен для настройки СВ-аппаратуры. Напряжение сигнала с " Вых. 1 " составляет 0,05 В на нагрузке 50 Ом. Имеется и "Вых.2". к которому можно подключать частотомер при налаживании приемников. В генераторе предусмотрена возможность получения частотно-модулированных колебаний. Для этого служит "Вх. мод.", на который подается низ-кочастотный сигнал с внешнего генератора звуковой частоты. Питание генератора производится от стабилизированного источника +12 В.потребляемый ток не превышает 20 мА. Задающий генератор выполнен на полевых транзисторах VT1. VT2. включенных по схеме "общий исток - общий затвор".

Генератор, собранный по такой схеме, хорошо работает на частотах от 1 до 100 МГц. потому что в нем применены полевые транзисторы с граничной частотой >100 МГц. Согласно проведенным исследованиям . этот генератор имеет кратковременную нестабильность частоты (за 10 с) лучшую, чем генераторы, выполненные по схемам емкостной и индуктивной трехточки. Уход частоты генератора за каждые 30 мин работы после двухчасового прогрева, а также уровни второй и третьей гармоник меньше, чем у генераторов, выполненных по схеме трехточки. Положительная обратная связь в генераторе осуществляется конденсатором С10. В цепь затвора VT1 включен колебательный контур С5...С8. L1. определяющий частоту генерации схемы. Через небольшую емкость С9 к контуру подключена варикапная матрица VD1. Подавая на нее низкочастотный сигнал, изменяем ее емкость и тем самым осуществляем частотную модуляцию генератора. Питание генератора дополнительно стабилизируется VD2. Высокочастотный сигнал снимается с резистора R6. включенного в истоковые цепи транзисторов. К генератору через конденсатор С 11 подключен широкополосный эмиттерный повторитель на VT3 и VT4. Преимущества такого повторителя приведены в . К его выходу через конденсатор С 15 подключен делитель напряжения (R14.R15). Выходное сопротивление по "Вых.1" равно 50 Ом. поэтому с помощью коаксиального кабеля с волновым сопротивлением 50 Ом к нему можно подключить схему с входным сопротивлением 50 Ом. например ВЧ-аттенюатор. опубликованный в [З]. К выходу эмиттерного повторителя подключен истоковый повторитель на VT5. Это позволило полностью исключить взаимное влияние нагрузок. подключенных к "Вых.1" и "Вых.2".

Детали. Конденсаторы Сб...С 10 - типа КТ6. Остальные конденсаторы: керамические - типа К10-7В. К10-17. электролитические - типа К50-35. Катушка L1 намотана на керамическом ребристом каркасе (размер по ребрам - 15 мм) посеребренным проводом диаметром 1 мм с шагом 2 мм. Количество витков -- 6.75. Намотка производится нагретым проводом с "натягом". Дроссель L2 - от черно-белых ламповых телевизоров (можно использовать и другие) индуктивностью от 100 до ЗООмкГн. Резисторы - типа МЛТ-0.125. Полевые транзисторы можно применить любые из серии КПЗОЗ. еще лучше - из серии КП307. Высокочастотные разъемы Х1...ХЗ - типа СР50-73ФВ. Транзистор VT3 - любой высокочастотный прп-типа. VT4 - высокочастотный рпр-типа.

Литература
1. Котиенко Д.. Туркин Н. LC-генератор на полевых транзисторах. - Радио. 1990. N5. с.59.
2. Широкополосный повторитель напряжения. - Радио. 1981. N4. с.61.
3. ВЧ аттенюатор. - Радиолюбитель. KB и УКВ. 1996. N10. с.36.
4. Мухин В. Нестандартное поведение катушек индуктивности при нагревании. -- Радиолюбитель. 1996. N9. с.13. 14.
5. Маслов Е. Расчет колебательного контура для растянутой настройки. - Радиолюбитель, 1995. N6. с. 14-16.

Состоящем из 3.5 деталей и выдающем несколько ватт мощности на частоте в 400-500 мегагерц, достаточных для того, чтобы засвечивать газоразрядные приборы типа неонок, слегка обжигать пальцы и сообщать о себе частотомерам.

При наличии правильных транзисторов, понимания методик составления ВЧ плат и некотором везении можно значительно усилить эту конструкцию, подняв мощность до 40-50 ватт на той же частоте.

Транзисторы, которые работают на таких частотах и мощностях, уже значительно отличаются от привычных многим читателям моего скромного блога трёхногих TO-247, TO-220, и других корпусов, равно как и от «кирпичей». Форма их корпусирования в значительной степени диктуется поведением сигналов на высоких частотах. Обычно это квадрат или прямоугольник, характерного белого оттенка, с расположенными с двух или четырёх сторон позолоченными выводами довольно внушительной толщины. Стоят эти транзисторы также значительно дороже силовых инверторных, причём цена растёт пропорционально как мощности, так и частоте, и может доходить до сотен долларов за штуку и выше.

Для данной конструкции ВЧ транзистор с маркировкой MRF 6522- 70 был аккуратно выпаян из демонтированной платы GSM базовой станции. Как нетрудно заметить по даташиту, он может выдавать до 70 ватт на частоте в 900 мегагерц. Однако, для ввода его в такой режим необходимо довольно тщательно спроектировать плату — все эти характерные для высоких частот изгибы дорожек, гальванически никуда не подключенные куски фольги и прочие странные выверты, кажущиеся не особо осмысленными, но на деле влияющие на поведение сигнала, здесь уже совершенно необходимы. А на меньших мощностях и частотах на них можно забить и сделать плату банальным методом гравировки прорезей.

Принципиальных отличий конструкции от упоминавшегося выше нет. Разве что, в качестве резонатора взяты две медные полосы, определённой длины и размеров (расстояние между ними, их ширина и длина определяют L и С резонансного автогенераторного контура — они сами себе и индуктивность, и ёмкость).

Генератор потребляет по входу 18 вольт с током до 4 ампер, и довольно ощутимо разогревает радиатор. Принудительное охлаждение является совершенно необходимым для его работы, учитывая КПД в 50-60%. Кроме радиатора, довольно неплохо нагреваются пальцы, если поднести их поближе к медному резонатору. Принцип нагрева здесь тот же, что у продуктов в микроволновке (что убедительно опровергает бредни про резонансные явления в молекулах воды, которые якобы происходят на её рабочей частоте). Если поджечь факел на конце резонатора, то он успешно удерживается там продолжительное время — маленький светящийся шарик плазмы с размытыми краями, диаметром в 3-5 миллиметров.

Схема генератора прилагается:

Но самое интересное, ради чего я вообще начал всё это рассказывать, это явления, происходящие с разреженными газами на таких частотах. Поведение плазменного жгута начинает резко отличаться от стандартных изгибов, характерных для частот в десятки и сотни килогерц, использовавшиеся мною ранее (при работе с качером и т. д.). Довольно долго описывать при помощи текста все различия, достаточно просто посмотреть галерею изображений и приложенные видео. Наиболее интересным образом себя ведут, конечно, ксенон, криптон и их смеси с добавками. Поразительные сочетания оттенков, форм и движений создают ощущение, что в бутылке или колбе живое существо, приехавшее к нам прямиком из мифологии Лавкрафта или из чего-то подобного. Щупальца, присоски, резкие и в то же время плавные движения, зеленовато-призрачные оттенки как будто бы живая иллюстрация к рассказам о Ктулху и других жителях глубин.

Все четыре видео крайне заслуживают просмотра. Очень рекомендую.

ВЧ генератор

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором. Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне)

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм. Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны.

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу. В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру. Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ желательно использовать высококачественные (на шарикоподшипниках). При жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц. Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А. На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Широкополосный генератор

Диапазон генерируемых частот-10 гц-100 мгц

Выходное напряжение-50 мв

Напряжение питания-1,5 в

Потребляемый ток-1,6 ма

Печатная плата и лицевая панель

Внешний вид


Простой генератор ВЧ

Для качественного налаживания приемной аппаратуры необходим генератор ВЧ сигналов. На рисунке показана схема такого генератора, работающего в двух диапазонах 1,6-7 Мгц и 7-30 Мгц. Плавная настройка - трех-секционным переменным конденсатором С1 с воздушным диэлектриком.

Диод Шоттки VD1 служит для стабилизации выходного ВЧ-напряжения в широком диапазоне перестройки частоты.

Максимальное выходное напряжение 4 V, регулируется перемен ым резистором R4.

Катушки L1 и L2 намотаны на ферритовых стержнях 2,8мм и длиной 12 мм из феррита 100НН. L1 - 12 витков ПЭВ 0,12, L2 -48 витков ПЭВ 0,12. Намотка рядовая. Катушка L3 намотана на ферритвом кольце 7 мм, всего 200 витков ПЭВ 0,12 внавал.

КВ генератор

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором.

Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм (рис.2). Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу.

В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру.

Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

Диапазон, МГц

Количество витков

Провод (диаметер, мм)

Каркас, сердечник

Выходной уровень, В

Бескаркасная диаметром 6 мм. L=12 мм

Керамический диаметром 6 мм, L=12 мм

Унифицированный
3-секционный

Унифицированный
4-секционный

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные.

Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80...150 пФ, но они легко ломаются и имеют заметный "гистерезис" при вращении вперёд и назад.

Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц (при стабильной температуре в помещении).

Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А.

На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР - Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.