Формирование конфигурации системы централизованного теплоснабжения крупного промышленного города. Общие сведения о теплоснабжении

ВВЕДЕНИЕ

Система централизованного теплоснабжения Омского филиала включает пять теплоисточников, три из которых работают в режиме ТЭЦ и два -- в режиме котельных, протяженность магистральных тепловых сетей более 260 км при среднем диаметре 600 мм, 13 перекачивающих насосных станций (ПНС) и более 12,5 тысяч тепловых пунктов.

Омскому предприятию «Тепловые сети» около 70 лет. Исторически тепловые сети прокладывались от теплоисточников по радиальной схеме. По мере необходимости и текущей целесообразности от разных ТЭЦ сети соединялись перемычками. В настоящее время перемычками связаны четыре теплоисточника из пяти, входящих в энергокомпанию.

ФОРМИРОВАНИЕ КОНФИГУРАЦИИ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Сегодня тепловые сети города Омска «закольцованы», но конфигурация сетей не позволяет решать проблемы, которые для сложных систем теплоснабжения имеют принципиальное значение , это вопросы:

  • - надежности;
  • - резервирования;
  • - экономичности;
  • - системы менеджмента качества (СМК);
  • - системы экологического менеджмента (СЭМ);
  • - обеспечения подключения перспективных тепловых нагрузок растущего города и другие.

Все эти требования могла бы решить комплексная программа развития системы теплоснабжения с перспективой развития города на 20-25 лет. Но такой программы нет. На ее реализацию требуются значительное время, силы и финансовые средства. Администрация Омска понимает необходимость разработки комплексной программы для города, но практическое решение пока остается в перспективе . В нашей компании разрабатывается концепция развития энергетических мощностей, которая звучит как «Энергетическое обследование структурных подразделений, разработка направлений дальнейшего развития и возможных мероприятий по увеличению установленной и располагаемой мощности». Но всем понятно, что решение этой проблемы сдерживает несовершенство конфигурации тепловых сетей. А между тем на сегодняшний день это самая актуальная проблема. Необходим переход на кольцевую систему СЦТ на базе научного анализа, разработка структурного формирования конфигурации СЦТ с проведением многовариантных расчетов тепловых потоков от всех теплоисточников . теплоснабжение тепловой поток

Один из примеров. При интенсивной застройке левобережной части города Омска возник острый дефицит тепловых мощностей, что негативно сказалось на развитии зоны застройки. Не имея разработанной и утвержденной комплексной схемы теплоснабжения, городская администрация пошла путем строительства мелких газовых котельных мощностью 20-40 мВт. Так, в спальных районах города построены несколько котельных, внедрение которых в жилых массивах города экологически, экономически и технически не верно . О «котельнизации» России написано немало статей. Авторами многих из них являются омские энергетики.

Отсутствие перспективной комплексной схемы теплоснабжения послужило основанием для компромиссного решения: было достигнуто соглашение между администрацией города и ресурсоснабжающими организациями о распределении зон теплоснабжения на перспективной площадке между энергокомпанией и другими мелкими собственниками. Под это соглашение в Омском филиале ОАО «ТГК-11» был разработан проект инвестиционной программы по декомпозиции СЦТ на базе серьезных научных проработок с учетом требований надежности, резервирования, СМК, СЭМ и экономичности. Инвестиционный проект включает следующие разделы:

  • 1) поэтапное строительство новой протяженной теплотрассы в районе перспективного строительства Левобережной части города по мере его застройки;
  • 2) удовлетворение требований надежности, резервирования при работе новой теплотрассы от различных теплоисточников с учетом СМК И СЭМ;
  • 3) реконструкция теплофикационной установки одной из ТЭЦ, находящейся на правом берегу, где в результате сокращения промышленного потребления пара выявлена возможность реализации дополнительной тепловой мощности 300 Гкал/ч, что позволяет увеличить выработку электроэнергии на ТЭЦ по теплофикационному циклу и снизить себестоимость производства электрической и тепловой энергии, увеличить финансовую прибыль;
  • 4) перераспределение тепловых нагрузок между теплоисточниками Омского филиала в рамках существующей конфигурации тепловых сетей из условия наибольшей эффективности;
  • 5) создание резерва располагаемой тепловой мощности для подключения дополнительных тепловых нагрузок в активно развивающейся центральной части города, что позволяет снять вопрос дефицита тепловых мощностей в ближайшие два-три года.

Реализация этого проекта решила актуальные проблемы в рамках СЦТ города только частично.

Следующий пример. Удалённая на значительное расстояние от города ТЭЦ имеет большой резерв тепловой мощности, но из-за отсутствия транзитной тепломагистрали нет возможности использовать эти мощности. Реализация «запертых» тепловых мощностей удаленной ТЭЦ позволит увеличить выработку электрической энергии по теплофикационному циклу, что значительно повысит эффективность и улучшит экономические показатели, обеспечив финансовую прибыль. «Переброска» тепла на большое расстояние через реку Иртыш имеет стратегическое значение, так как позволит отодвинуть строительство новой ТЭЦ на левом берегу на 10-12 лет, перевести левобережную районную котельную в пиковый режим работы, значительно улучшить экологическую и социальную обстановку в городе.

На нашем предприятии тепловых сетей мы ежегодно занимаемся выявлением и устранением существующих узких мест путем решения вопросов декомпозиции схемы тепловых сетей, используя научные методы анализа и синтеза, проводя глубокие исследования и многовариантные расчеты для усовершенствования СЦТ города .

Исследования и анализ многовариантных расчетов показали возможность устранения одного из узких мест в конфигурации тепловых сетей. Из множества возможных вариантов наиболее предпочтительным с точки зрения решения всего комплекса проблем был выявлен вариант реконструкции большей части существующей тепломагистрали от самой крупной ТЭЦ, пролегающей через центр города. Для этого потребовалось увеличить пропускную способность магистральных трубопроводов и выполнить реконструкцию ПНС. Общая стоимость этого проекта -- около 200 млн руб., при существующих тарифах на тепловую энергию срок его окупаемости составит около трех лет.

Но как оказалось, даже на этот фрагмент изменения конфигурации СЦТ не хватило средств, и мы вынуждены проводить его поэтапно. В текущем году была освоена лишь половина. Заменено более 3 км магистральных тепловых сетей, и, не взирая на

финансовые ограничения, вопросы надежности, качества и резервирования на этом участке были успешно решены с использованием новых материалов и технологий. Но финансовую прибыль нам не удастся получить до окончания реализации этого проекта в полном объеме и реконструкции ПНС, которая запланирована лишь на следующий год.

Необходимо признать, что оптимизация конфигурации СЦТ крупного промышленного города на основе научного анализа и превращение ее из преимущественно радиальной в настоящую полномасштабную функциональную кольцевую, требует огромных интеллектуальных и капитальных затрат. Финансовая выгода при этом значительно превосходит вложенные средства при коротком сроке окупаемости. Однако финансовый кризис сдерживает темпы строительства в городе и отражается на сокращении инвестиций в развитие СЦТ .

Теплопотери с инфильтрацией



16. Системы водяного отопления с насосной циркуляцией теплоносителя.


17. Тепловые потери и коэффициент эффективности тепловой изоляции.

18. Теплообмен стенки ограждения с окружающим воздухом.



25. Классификация тепловых нагрузок.




19. Выбор теплоносителя и систем теплоснабжения.


20. Основные преимущества и недостатки открытых и закрытых систем теплоснабжения. Методика теплового расчета

Водяные СТС применяют 2х типов:

Открытые (разомкнутые)

Закрытые (замкнутые)

В закрытых системах сетевая вода, циркулируя в тепловой сети используется только как ТН-ль, но из системы не отбирается.

В открытых системах сетевая вода частично разбирается у абонентов для горячего водоснабжения.

В зависимости от числа трубопроводов, используемых для теплоснабжения данной группы потребителей водяные системы делятся на одно-,2-х,3-х и многотрубные СТС. Минимальное число трубопроводов для открытой системы -1, для закрытой – 2.

Преимущества и недостатки закрытых СТС.

Водопроводная вода, поступающая в установки ГВС не имеет прямого контакта с сетевой водой, вследствие этого у нее более высокое качество.

Гидравлич. изолированность водопроводн. воды,поступающей в установки ГВС от воды, циркулирующей в теловой сети

Чрезвычайно простой санитарный контроль в системах ГВС

Простой контроль герметичности теплофикац-й системы,который производ-ся по расходу подпитки.

Выпадание накипи при использ-и водопроводн. воды повыш. жесткости

Коррозия местных установок ГВС

Сложность оборуд-я в эксплуатации

Методика теплового расчета



21. Схема движения жидкости по трубопроводу тепловой сети, уравнение Бернулли, напор потока жидкости.




22. Тепловые потери тепловой сети. Схемы и конфигурации тепловых сетей.


Схемы тепловых сетей, Конфигурации тепловых сетей








23. Открытые и закрытые системы теплоснабжения.




24. Понятие о централизованном и децентрализованном теплоснабжении. Достоинства и недостатки, область применения.

В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на децентрализованные и централизованные.

В децентрализованных системах источник теплоты и теплоприёмники потребителей либо совмещены в одном агрегате, либо размещены столь близко, что передача теплоты от источника до теплоприёмников может осуществляться практически без промежуточного звена- тепловой сети.

Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные. В индивидуальных теплоснабжение каждого помещения обеспечивается от отдельного источника. В местных теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной или индивидуальной котельной.

В системах централизованного теплоснабжения источник теплоты и теплоприёмники потребителей размещены раздельно, часто на значительном расстоянии, поэтому теплота от источника до потребителя передаётся по тепловым сетям.

В зависимости от степени централизации системы ЦТ можно разделить на следующие группы: групповое- теплоснабжение от одного источника группы зданий, районное- теплоснабжение от одного источника нескольких групп зданий, городское- теплоснабжение от одного источника нескольких районов, межгородское- теплоснабжение от одного источника нескольких городов.

Процесс централизованного теплоснабжения состоит из 3х последовательных операций: подготовки теплоносителя, транспортировки ТН, использовании ТН.


25. Режимы регулирования систем централизованного теплоснабжения.

Схемы и конфигурации тепловых сетей

Задачи гидравлического расчета тепловых сетей

Гидравлический расчет является одним из важнейших этапов проектирования и эксплуатации тепловых сетей.

При проектировании тепловых сетей в прямую задачу гидравлического расчета входит:

1. Определœение диаметров трубопроводов;

2. Определœение потерь давления на участках;

3. Определœение давления в различных точках;

4. Увязка всœех точек системы при статическом и динамическом режимах.

В некоторых случаях (при эксплуатации тепловых сетей) может решаться обратная задача, ᴛ.ᴇ. определœение пропускной способности трубопроводов при известном диаметре или потерях давления участка.

В результате после гидравлического расчета тепловой сети бывают решены следующие задачи:

1. Определœение капитальных вложений;

2. Подбор циркуляционных и подпиточных насосов;

3. Выбор схем присоединœения абонентов;

4. Выбор регулирования абонентских вводов;

5. Разработка режима эксплуатации.

Для проведения гидравлического расчета должны быть заданы схема и профиль тепловой сети, указаны размещения источника и потребителœей и расчетные тепловые нагрузки.

Схема тепловой сети определяется размещением источника теплоты (ТЭЦ или котельной) по отношению к району теплопотребления, характером тепловой нагрузки и видом теплоносителя (рис. 5.1 ).

Основные принципы, которыми следует руководиться при выборе схемы тепловой сети - ϶ᴛᴏ надежность и экономичность.

Экономичность тепловой сети определяется по - среднее удельное падение давления по длинœе. = f (стоимости сети, расхода электроэнергии на перекачку теплоносителя, теплопотерь трубопроводов и т.д.)

Удельные потери давления на трение при гидравлических расчетах водяных тепловых сетей следует определять на основании технико-экономических расчетов.

В случае если технико-экономические расчёты не проводятся, то рекомендуется принимать:

Магистральные трубопроводы;

Ответвления.

Надежность тепловой сети - ϶ᴛᴏ способность непрерывной подачи теплоносителя к потребителю в крайне важно м количестве в течении всœего года. Требования к надежности тепловой сети возрастают с понижением расчетной температуры наружного воздуха и увеличением диаметров трубопроводов. В СНиПе для различных t нр и d тр указаны крайне важно сть резервирования подачи теплоты и допускаемое снижение подачи от расчетного значения.

Аварийная уязвимость тепловой сети особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединœении абонентов, в связи с этим при выборе схемы водяной тепловой сети вопросам надежности и резервирования теплоснабжения крайне важно уделить особое внимание.

Водяные тепловые сети разделяются на магистрали и распределительные. К магистралям относятся трубопроводы, соединяющие источник с районами теплопотребления. Из магистралей теплоноситель поступает в распределительные сети и по ним через ЦТП и ИТП к абонентам. Непосредственное присоединœение потребителœей к магистралям тепловой сети допускать не следует, кроме крупных промышленных предприятий (с Q > 4 МВт ).

Рис. 5.1.

Принципиальная

схема тепловой

СК – секционирущая камера

В местах присоединœения распределительных сетей к магистралям сооружают секционирующие камеры (СК), в которых размещают: секционирующие задвижки, задвижки распределительных сетей и т.д.

Секционирующие задвижки устанавливают на магистралях с 100 мм на 1000 м , 400 мм на 1500 м . Благодаря разделœению магистральных сетей на секции уменьшаются потери воды из тепловой сети при аварии, т.к. место аварии локализуется секционными задвижками.

Принципиально существуют две схемы: тупиковая(радиальная) и кольцевая.

Рис. 5.2 . Принципиальные схемы тепловых сетей: а, в – тупиковые;

в – кольцевая; 1 – магистраль 1; 2 – магистраль 2;

3 – резервирующая перемычка

Тупиковая схема (рис. 5.2а, в ) более дешевая по начальным затратам, требует меньше металла и проста в эксплуатации. При этом менее надежна, т.к. при аварии на магистралях прекращается теплоснабжение абонентов, присоединœенных за местом аварии.

Кольцевая схема (рис. 5.2б ) более надежна и применяется в крупных системах теплоснабжения от нескольких источников.

Для увеличения надежности работы тупиковых схем применяют резервирующие перемычки (рис. 5.2в ).

Схемы и конфигурации тепловых сетей - понятие и виды. Классификация и особенности категории "Схемы и конфигурации тепловых сетей" 2017, 2018.

СХЕМЫ, ПРОКЛАДКИ И КОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или котельных) по отношению к району теплового потребления, характером тепловой нагрузки потребителей района и видом теплоносителя. Основные принципы, которыми следует руководствоваться при выборе схемы теплосети, - это надежность и экономичность. При выборе конфигурации теплосетей, как правило, стремиться к получению наиболее простых решений и наименьшей длины теплопроводов.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и то же время достаточно надежным решением является прокладка однотрубного паропровода с конденсатопроводом.

Следует иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов и в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на 100% нагрузки, двух параллельных, рассчитанных на 50% нагрузки, площадь поверхности трубопроводов возрастает на 56%. Соответственно возрастают расход металла и начальная стоимость тепловой сети.

Более сложной задачей является выбор схемы водяных теплосетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные теплосети в современных городах обслуживают большое количество потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий, расположенных на территориях, измеряемых часто многими десятками квадратных километров.

Водяные сети менее долговечны по сравнению с паровыми главным образом из-за большей подверженности наружной коррозии стальных трубопроводов подземных водяных сетей по сравнению с паропроводами. Кроме того, водяные теплосети более чувствительны к авариям из-за большой плотности теплоносителя. Аварийная уязвимость водяных систем теплоснабжения особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединении отопительных установок к теплосети, поэтому при выборе схемы водяных теплосетей вопросам надежности и резервирования теплоснабжения необходимо уделить особое внимание.

Водяные теплосети должны четко разделяться на магистральные и распределительные. К магистральным сетям обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных сетей в распределительные сети и по ним подается через ЦТП или ИТП к теплопотребляющим установкам потребителей. Непосредственное присоединение потребителей теплоты к магистральным сетям допускать не следует, за исключением случаев присоединения крупных промышленных предприятий.



В узлах присоединения распределительных сетей к крупным магистралям сооружаются так называемые секционирующие камеры (СК), в которых размещаются: секционирующие задвижки, головные задвижки распределительных сетей, задвижки на блокирующих связях между смежными магистралями, а также между магистралями и резервными источниками теплоснабжения (например, районными котельными). Секционирующие задвижки устанавливаются обычно на магистральных сетях через 2-3 км. Благодаря разделению магистральных сетей на секции уменьшаются потери воды из теплосети при аварии, т.к. место аварии локализуется секционирующими задвижками. Это облегчает и ускоряет включение в работу сети после аварии. Задвижки, установленные в СК, должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь двустороннее присоединение к магистрали с обеих сторон секционирующей задвижки с тем, чтобы можно было обеспечить бесперебойное теплоснабжение абонентов при авариях на любом секционированном участке магистрали.

В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика.

Блокировочные связи между магистралями могут выполняться однотрубными. Соответствующей схемой их присоединения к магистральной сети может быть предусмотрено использование блокирующей связи как для подающей, так и обратной линии.

Распределительные тепловые сети отводимые от СК, при диаметре этих сетей 700 мм и меньше, а также магистральные сети диаметром 700 мм и меньше выполняются обычно тупиковыми. Это объясняется тем, что максимально допустимая длительность аварийного прекращения теплоснабжения для большинства абонентов водяных тепловых сетей, за исключением зданий первой категории теплоснабжения (больницы, детские учреждения, государственные музеи и др.), может быть установлена в пределах до 24 ч, так как за такой период благодаря аккумулирующей способности зданий не возникает опасности их размораживания при наличии автономной циркуляции воды в абонентских отопительных установках.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарное резервирование котлов на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

Подготовленный теплоноситель (пар определенного давления или вода, нагретая до заданной температуры) подается по тепловым сетям к потребителям теплоты. Тепловая сеть состоит из теплопроводов, т. е. соединенных сваркой стальных труб, тепловой изоляции, запорной и регулировочной арматуры, насосных подстанций, авторегуляторов, компенсаторов тепловых удлинений, дренажных и воздухоспускных устройств, подвижных и неподвижных опор, камер обслуживания и строительных конструкций.

В настоящее время тепловые сети выполняются большей частью двухтрубными, состоящими из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей.

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или районных котельных) по отношению к району теплового потребления, характером тепловой нагрузки и видом теплоносителя. Схема сети должна обеспечивать надежность и экономичность эксплуатации; протяженность сети должна быть минимальной, а конфигурация по возможности простой.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Более сложной задачей считается выбор схемы водяных тепловых сетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные тепловые сети в современных городах обслуживают большое число потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий.

Водяные тепловые сети должны четко разделяться на магистральные и распределительные. К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных в распределительные сети и по распределительным сетям подается через групповые тепловые подстанции или местные тепловые подстанции к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям не следует допускать, за исключением случаев присоединения крупных промышленных предприятий.

Различают радиальные и кольцевые тепловые сети. Наиболее часто применяются радиальные сети, которые характеризуются постепенным уменьшением диаметра по мере удаления от источника теплоснабжения и снижения тепловой нагрузки (рис. 26). Такие сети просты в эксплуатации и требуют наименьших капитальных затрат.

Недостатком радиальных сетей является отсутствие резервирования. При аварии на одной из магистралей, например в точке а магистрали I , прекратится подача теплоты всем потребителям, расположенным после точки а по ходу теплоносителя. При аварии в начале магистрали прекращается теплоснабжение всех потребителей; присоединенных к этой магистрали. Для резервирования снабжения потребителей теплотой могут предусматриваться перемычки между магистралями. Перемычки прокладываются повышенного диаметра, они соединяют середины или концы магистралей.

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания. Схема такой сети показана на рис. 27. В такую же систему в ряде случаев могут быть объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Кольцевание сетей значительно удорожает сети, но повышает надежность теплоснабжения. Кольцевание промышленных тепловых сетей иногда является обязательным при снабжении теплотой потребителей, не допускающих перерывов в подаче теплоносителя, как правило, для технологических потребностей. В этом случае кольцевание может быть заменено дублированием, т. е. прокладкой параллельно двух паропроводов или теплопроводов. Второй паропровод или теплопровод в этом случае находится в «горячем резерве». При соответствующих обоснованиях на промышленных предприятиях предусматривается резервная мощность тепловых сетей для последующего расширения предприятия или отдельных цехов.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.