Виды защиты информации. Классификация средств защиты информации от фстэк и фсб россии

Виды защиты в экономических информационных системах классифицируются по направлениям защиты. К основным из них относятся:

Защита информации от несанкционированного доступа;

Защита информации в системах связи;

Защита юридической значимости электронных документов;

Защита конфиденциальной информации от утечки по каналам побочных электромагнитных излучений и наводок;

Защита информации от компьютерных вирусов и других опасных воздействий по каналам распространения программ;

Защита от несанкционированного копирования и распространения программ и ценной компьютерной информации.

С точки зрения защиты информации несанкционированный доступ может иметь следующие последствия: утечка обрабатываемой конфиденциальной информации, а также ее искажение или разрушение в результате умышленного нарушения работоспособности АИТ.

Одним из основных видов защиты информации от несанкционированного доступа является разграничение полномочий и доступа к информации.

Другим из эффективных методов обеспечения безопасности АИТ является регистрация. С этой целью ведется регистрационный журнал, в которой фиксируются все осуществленные или неосуществленные попытки доступа к данным или программам.

Система регистрации и учета осуществляет:

Регистрацию входа (выхода) субъектов доступа в систему (из системы) либо регистрацию загрузки и инициализации операционной системы и ее программного останова;

Регистрацию и учет выдачи печатных (графических) документов на твердую копию;

Регистрацию запуска (завершения) программ и процессов (заданий, задач), предназначенных для обработки защищаемых файлов;

Регистрацию попыток доступа программных средств к защищаемым файлам;

Учет всех защищаемых носителей информации.

К видам защиты информации в системах связи относятся применение криптографии и специальных связных протоколов.

К видам защиты юридической значимости электронных документов относится применение «цифровой подписи», которая является одним из криптографических методов проверки подлинности информационных объектов.

Для защиты от побочных электромагнитных излучений и наводок применяется экранирование помещений, предназначенных для размещения средств вычислительной техники, а также технические меры, позволяющие снизить интенсивность информативных излучений ПЭВМ и средств связи.

Видами защиты информации от компьютерных вирусов и других опасных воздействий по каналам распространения программ являются:

- «иммуностойкие» программные средства, защищенные от возможности несанкционированной модификации (разграничение доступа, методы самоконтроля и самовосстановления);

Специальные программы-анализаторы, осуществляющие постоянный контроль возникновения отклонений в работе прикладных программ, периодическую проверку наличия других возможных следов вирусной активности, а также входной контроль новых программ перед их использованием.

Защита от несанкционированного копирования и распространения программ и ценной компьютерной информации осуществляется с помощью специальных программных средств, подвергающих защищаемые программы и базы данных предварительной обработке (вставка парольной защиты, проверки по обращению к устройствам хранения ключа и ключевым дискетам, блокировка отладочных прерываний, проверка рабочей ПЭВМ по ее уникальным характеристикам и т.д.), которая приводит исполняемый код защищаемой программы и базы данных в состояние, препятствующее его выполнению на «чужих» машинах.

Контроль целостности программного обеспечения проводится с помощью внешних средств (программ контроля целостности) и с помощью внутренних средств (встроенных в саму программу). Внешние средства осуществляют контроль при старте системы, а также при каждом запуске программы на выполнение. Внутренние средства контролируют выполнение программ при каждом запуске на выполнение и состоят в сравнении контрольных сумм отдельных блоков программ с их эталонными суммами.

Противодействие несанкционированному изменению прикладных и специальных программ можно обеспечить разными способами, в частности методом контроля целостности базового программного обеспечения специальными программами.

При защите коммерческой информации пользуются всей совокупностью существующих средств и систем защиты данных. Однако при их выборе следует исходить из сравнительной оценки важности защищаемой информации и ущерба, который может нанести ее утрата.

Из перечисленных средств защиты наиболее надежными и эффективными являются системы и средства, построенные на базе криптографических методов.

Лекция: Защита информации

1. Виды информации

Источниками информации являются документы и прочие носители информации, которые представляют собой материальные объекты, сохраняющие информацию, а также сообщения средств массовой информации, публичные выступления.

Документ - это предусмотренная законом материальная форма получения, сохранения, использования и распространения информации путем фиксации ее на бумаге, магнитной, кино-, видео-, фотопленке или на другом носителе.

Первичный документ - это документ, который включает в себя исходную информацию.

Вторичный документ - это документ, который представляет собой результат аналитико-синтетической и другой переработки одного или нескольких документов.

Режим доступа к информации - это предусмотренный правовыми нормами порядок получения, использования, распространения и сохранения информации. По режиму доступа информация разделяется на открытую информацию и информацию с ограниченным доступом .

Государство осуществляет контроль режима доступа к информации. Задача контроля режима доступа к информации состоит в обеспечении соблюдения требований законодательства об информации всеми государственными органами, предприятиями, учреждениями и организациями, недопущении необоснованного отнесения сведений к категории информации с ограниченным доступом.

Доступ к открытой информации обеспечивается путем:


  • систематической публикации ее в официальных печатных изданиях (бюллетенях, сборниках);

  • распространения ее средствами массовой коммуникации;

  • непосредственного ее предоставления заинтересованным гражданам, государственным органам и юридическим лицам.
Информация с ограниченным доступом по своему правовому режиму разделяется на конфиденциальную и тайную .

Конфиденциальная информация - это сведения, которые находятся во владении, пользовании или распоряжении отдельных физических или юридических лиц и распространяются по их желанию соответственно с предусмотренными ими условиями.

К тайной информации принадлежит информация, которая содержит сведения, составляющие государственную и другую предусмотренную законом тайну, разглашение которой наносит ущерб личности, обществу и государству. Отнесение информации к категории тайных сведений, которые составляют государственную тайну, и доступ к ней граждан осуществляется соответственно закону об этой информации.

2. Причины, влияющие на развитие защиты информации

По мере развития и усложнения средств, методов и форм автоматизации процессов обработки информации повышается ее уязвимость. Основными факторами, способствующими повышению этой уязвимости, являются:


  1. Резкое увеличение объемов информации, накапливаемой, хранимой и обрабатываемой с помощью ЭВМ и других средств автоматизации.

  2. Сосредоточение в единых базах данных информации различного назначения и различных принадлежностей.

  3. Резкое расширение круга пользователей, имеющих непосредственный доступ к ресурсам вычислительной системы и находящимся в ней данных.

  4. Усложнение режимов функционирования технических средств вычислительных систем: широкое внедрение многопрограммного режима, а также режимов разделения времени и реального времени.

  5. Автоматизация межмашинного обмена информацией, в том числе и на больших расстояниях.
В этих условиях возникает уязвимость двух видов: с одной стороны, возможность уничтожения или искажения информации (т.е. нарушение ее физической целостности), а с другой - возможность несанкционированного использования информации (т.е. опасность утечки информации ограниченного пользования).

Основными потенциально возможными каналами утечки информации являются:


  1. Прямое хищение носителей и документов.

  2. Запоминание или копирование информации.

  1. Несанкционированное подключение к аппаратуре и линиям связи или незаконное использование "законной" (т.е. зарегистрированной) аппаратуры системы (чаще всего терминалов пользователей).

  2. Несанкционированный доступ к информации за счет специального программного обеспечения.

3. Методы защиты информации

Можно выделить три направления работ по защите информации: теоретические исследования , разработка средств защиты и обоснование способов использования средств защиты в автоматизированных системах.

В теоретическом плане основное внимание уделяется исследованию уязвимости информации в системах электронной обработки информации, выявлению и анализу каналов утечки информации, обоснованию принципов защиты информации в больших автоматизированных системах и разработке методик оценки надежности защиты.

К настоящему времени разработано много различных средств, методов, мер и мероприятий, предназначенных для защиты информации, накапливаемой, хранимой и обрабатываемой в автоматизированных системах.

а) аппаратные методы защиты

К аппаратным средствам защиты относятся различные электронные, электронно-механические, электронно-оптические устройства. К настоящему времени разработано значительное число аппаратных средств различного назначения, однако наибольшее распространение получают следующие:

Специальные регистры для хранения реквизитов защиты: паролей, идентифицирующих кодов, грифов или уровней секретности,

Генераторы кодов, предназначенные для автоматического генерирования идентифицирующего кода устройства,

Устройства измерения индивидуальных характеристик человека (голоса, отпечатков) с целью его идентификации,

Специальные биты секретности, значение которых определяет уровень секретности информации, хранимой в ЗУ, которой принадлежат данные биты,

Схемы прерывания передачи информации в линии связи с целью периодической проверки адреса выдачи данных.

Особую и получающую наибольшее распространение группу аппаратных средств защиты составляют устройства для шифрования информации (криптографические методы).

б) программные методы защиты

К программным средствам защиты относятся специальные программы, которые предназначены для выполнения функций защиты. Они включаются в состав программного обеспечения систем обработки данных. По функциональному назначению их можно разделить на следующие группы:

Идентификация технических средств (терминалов, устройств группового управления вводом-выводом, ЭВМ, носителей информации), задач и пользователей,

Определение прав технических средств (дни и время работы, разрешенные к использованию задачи) и пользователей,

Контроль работы технических средств и пользователей,

Регистрация работы технических средств и пользователей при обработке информации ограниченного использования,

Уничтожения информации в запоминающих устройствах после использования,

Сигнализации при несанкционированных действиях,

Вспомогательные программы различного назначения: контроля работы механизма защиты, проставления грифа секретности на выдаваемых документах.

в) резервное копирование

Резервное копирование информации заключается в хранении копии программ на носителе: стримере, гибких носителях, оптических дисках, жестких дисках. На этих носителях копии программ могут находиться в нормальном (несжатом) или заархивированном виде. Резервное копирование проводится для сохранения программ от повреждений (как умышленных, так и случайных), и для хранения редко используемых файлов.

Большинство наиболее популярных современных программ резервирования предоставляют, в том или ином виде, базу данных о зарезервированных файлах и некоторую информацию о том, на какой ленте находятся последние зарезервированные копии.

г) криптографическое шифрование информации

Криптографическое закрытие (шифрование) информации заключается в таком преобразовании защищаемой информации, при котором по внешнему виду нельзя определить содержание закрытых данных. Криптографической защите специалисты уделяют особое внимание, считая ее наиболее надежной, а для информации, передаваемой по линии связи большой протяженности, - единственным средством защиты информации от хищений.

Основные направления работ по рассматриваемому аспекту защиты можно сформулировать таким образом:

Выбор рациональных систем шифрования для надежного закрытия информации,

Обоснование путей реализации систем шифрования в автоматизированных системах,

Разработка правил использования криптографических методов защиты в процессе функционирования автоматизированных систем,

Оценка эффективности криптографической защиты.

Шифрование заменой (иногда употребляется термин "подстановка") заключается в том, что символы шифруемого текста заменяются символами другого или того же алфавита в соответствии с заранее обусловленной схемой замены.

Шифрование перестановкой заключается в том, что символы шифруемого текста переставляются по какому-то правилу в пределах какого-то блока этого текста. При достаточной длине блока, в пределах которого осуществляется перестановка, и сложном и неповторяющемся порядке перестановке можно достигнуть достаточной для практических приложений в автоматизированных системах стойкости шифрования.

Шифрование гаммированием заключается в том, что символы шифруемого текста складываются с символами некоторой случайной последовательности, которая называется гаммой. Стойкость шифрования определяется главным образом размером (длиной) неповторяющейся части гаммы. Поскольку с помощью ЭВМ можно генерировать практически бесконечную гамму, то данный способ считается одним из основных для шифрования информации в автоматизированных системах.

Шифрование аналитическим преобразованием заключается в том, что шифруемый текст преобразуется по некоторому аналитическому правилу (формуле). Можно, например, использовать правило умножения матрицы на вектор, причем умножаемая матрица является ключом шифрования (поэтому ее размер и содержание должны сохраняться в тайне), а символы умножаемого вектора последовательно служат символы шифруемого текста.

Особенно эффективными являются комбинированные шифры , когда текст последовательно шифруется двумя или большим числом систем шифрования (например, замена и гаммирование, перестановка и гаммирование). Считается, что при этом стойкость шифрования превышает суммарную стойкость в составных шифрах.

Каждую из рассмотренных систем шифрования можно реализовать в автоматизированной системе либо программным путем, либо с помощью специальной аппаратуры. Программная реализация по сравнению с аппаратной является более гибкой и обходится дешевле. Однако аппаратное шифрование в общем случае в несколько раз производительнее. Это обстоятельство при больших объемах закрываемой информации имеет решающее значение.

д) физические меры защиты

Это различные устройства и сооружения, а также мероприятия, которые затрудняют или делают невозможным проникновение потенциальных нарушителей в места, в которых можно иметь доступ к защищаемой информации. Чаще всего применяются такие меры:

Физическая изоляция сооружений, в которых устанавливается аппаратура автоматизированной системы, от других сооружений,

Ограждение территории вычислительных центров заборами на таких расстояниях, которые достаточны для исключения эффективной регистрации электромагнитных излучений, и организации систематического контроля этих территорий,

Организация контрольно-пропускных пунктов у входов в помещения вычислительных центров или оборудованных входных дверей специальными замками, позволяющими регулировать доступ в помещения,

Организация системы охранной сигнализации

е) организационные мероприятия по защите информации

Это такие нормативно-правовые акты, которые регламентируют процессы функционирования системы обработки данных, использование ее устройств и ресурсов, а также взаимоотношение пользователей и систем таким образом, что несанкционированный доступ к информации становится невозможным или существенно затрудняется. Организационные мероприятия играют большую роль в создании надежного механизма защиты информации. Причины, по которым организационные мероприятия играют повышенную роль в механизме защиты, заключается в том, что возможности несанкционированного использования информации в значительной мере обуславливаются нетехническими аспектами: злоумышленными действиями, нерадивостью или небрежностью пользователей или персонала систем обработки данных. Влияние этих аспектов практически невозможно избежать или локализовать с помощью выше рассмотренных аппаратных и программных средств, криптографического закрытия информации и физических мер защиты. Для этого необходима совокупность организационных, организационно-технических и организационно-правовых мероприятий, которая исключала бы возможность возникновения опасности утечки информации подобным образом.

Основными мероприятиями в такой совокупности являются следующие:

Мероприятия, осуществляемые при проектировании, строительстве и оборудовании вычислительных центров (ВЦ),

Мероприятия, осуществляемые при подборе и подготовки персонала ВЦ (проверка принимаемых на работу, создание условий при которых персонал не хотел бы лишиться работы, ознакомление с мерами ответственности за нарушение правил защиты),

Организация надежного пропускного режима,

Организация хранения и использования документов и носителей: определение правил выдачи, ведение журналов выдачи и использования,

Контроль внесения изменений в математическое и программное обеспечение,

Организация подготовки и контроля работы пользователей,
4. Защита информации от компьютерных вирусов

В настоящее время компьютерные вирусы получили очень широкое распространение, и ан­тивирусная борьба доставляет рядовому пользователю большую «головную боль». Поэтому важ­но понимать способы распространения и характер проявления вирусов, а главное, научиться правильно применять антивирусные программы для эффективной борьбы с вирусами.

Характеристика вирусов

Вирус представляет собой самовоспроизводящуюся программу, которая способна внедрять свои копии в файлы, системные области, вычислительные сети и т, д. и приво­дить к нарушению нормального функционирования компьютера. Копии вирусной про­граммы также сохраняют способность дальнейшего распространения. Вирусы принятоклассифицировать по следующим признакам: среде обитания, способу заражения среды обитания, способу активации, деструктивным возможностям, особенностям алгоритма.

По среде обитания вирусы разделяют на файловые, загрузочные и сетевые. Файловые вирусы внедряются в выполняемые файлы (с расширением.exe, .com), или файлы докумен­тов текстовых табличных процессоров. Загрузочные вирусы внедряются в загрузочный сектор диска или в сектор системного загрузчика жесткого дис­ка. Сетевые вирусы распространяются по компьютерной сети. Существуют также файлово-загрузочные вирусы, которые заражают файлы и загрузочные секторы.

Способ заражения среды обитания зависит от самой среды. В частности, тело файлового вируса может при заражении размещаться в конце, начале, середине или хво­стовой (свободной) части последнего кластера файла. Наиболее просто реализуется вне­дрение вируса в конец файла. Наиболее сложна имплантация вируса в середину файла, поскольку для этого должна быть известна структура заражаемого файла, чтобы можно было внедриться, к примеру, в область стека. При внедрении загрузочного вируса (ввиду малых размеров среды обитания) используется размещение головы и тела вместо загрузочного сектора диска или сектора системного загрузчика, а хвост вируса и следую­щий за ним загрузочный сектор размещаются в других кластерах или секторах.

По способу активации вирусы подразделяют на резидентные и нерезидентные. Резидентный вирус при заражении оставляет в оперативной памяти резидентную часть, которая затем перехватывает обращения операционной системы к объектам заражения - файлам, загрузочным секторам и т. п., и внедряется в них. Резидентные вирусы сохраняют свою активность вплоть до выключения или перезагрузки компьютера. Нерезидентные вирусы являются активными ограниченное время и активизируются в определенные моменты, например, при запуске зараженных выполняемых программ или при обработке документов текстовым процессором. Некоторые нерезидентные вирусы оставляют в оперативной памяти небольшие резидентные программы.

По деструктивным возможностям вирусы разделяют на безвредные, неопас­ные, опасные и очень опасные. Безвредные вирусы проявляются только в том, что уменьшают объем памяти на диске в результате своего распространения. Неопасные вирусы, кроме отмеченного проявления, порождают графические, звуковые и другие эф­фекты. Опасные вирусы могут привести к нарушениям нормальной работы компьютера, например к зависанию или к неправильной печати документа. Очень опасные вирусы могут привести к уничтожению программ и данных, стиранию информации в системных об­ластях памяти и даже приводить к выходу из строя движущихся частей жесткого диска при вводе в резонанс.

Классификация антивирусных программ

Антивирусными называются программы, предназначенные для зашиты данных от разрушения, обнаружения и удаления компьютерных вирусов. Различают следующие разновидности антивирусных программ: фильтры, или сторожа; детекторы; доктора, или фаги; ревизоры; иммунизаторы, или вакцины.

Фильтр представляет собой резидентную программу, которая контролирует опас­ные действия, характерные для вирусных программ, и запрашивает подтверждение на их выполнение. К таким действиям относятся следующие: изменение файлов выполняемых программ; размещение резидентной программы; прямая запись на диск по абсолютному адресу; запись в загрузочные секторы диска; форматирование диска.

Достоинством программ-фильтров является их постоянное отслеживание опасных действий, повышающее вероятность обнаружения вирусов на ранней стадии их развития. С другой стороны, это же является и недостатком, так как приводит к отвлечению пользо­вателя от основной работы для подтверждения запросов по подозрительным операциям.

Детекторы обеспечивают поиск и обнаружение вирусов в оперативной памяти и на внешних носителях. Различают детекторы универсальные и специализированные. Уни­версальные детекторы в своей работе используют проверку неизменности файлов пу­тем подсчета и сравнения с эталоном контрольной суммы. Специали­зированные детекторы выполняют поиск известных вирусов по их сигнатуре (повто­ряющемуся участку кода).

Доктором называют антивирусную программу, позволяющую обнаруживать и обезвреживать вирусы.

Полифаг - программа, предназначенная для обнаружения и уничтожения компьютер­ных вирусов (Фаг - программа для обнаружения и уничтожения одного вируса). Как пра­вило, полифаги используют базу данных, содержащую данные о вирусах, с которыми умеет бороться полифаг. Кроме того, современные полифаги, как правило, имеют эври­стический анализатор, который позволяет обнаруживать вирусы, информация о которых не содержится в базе данных полифага. К их числу принадлежат получившие широкое распространение программы Doctor Web, Norton Antivirus. McAffee Virusscan. АVР и др. Основная особенность их работы заключается в необходимости постоянного обновления базы данных, содержащей сведения об вирусах. При этом важно помнить, что каждый месяц появляется от 100 до 200 и более новых вирусов. Поэтому программа не обновленная несколько месяцев может не обеспечить Вашему ПК должную защиту от новых вирусов.

Ревизор представляет собой программу, запоминающую исходное состояние про­грамм, каталогов и системных областей и периодически сравнивающую текущее состо­яние с исходным. Сравнение может выполняться по параметрам: длина и контрольная сумма файла и т. п. Достоинством ревизоров является их способность обнаруживать стелс-вирусы. К числу ревизоров относится хорошо известная программа ADinf.

Иммунизатор представляет собой резидентную программу, предназначенную для предотвращения заражения рядом известных вирусов путем их вакцинации. Суть вакцинации заключается в модификации программ или диска таким образом, чтобы это не от­ражалось на нормальном выполнении программ и то же время вирусы воспринимали их как уже зараженные и поэтому не пытались внедриться.


  1. Правовые аспекты обеспечения информационной безопасности (ИБ)
Информация - сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления” (Закон РФ “Об информации, информатизации и защите информации”). Информация подпадает под нормы вещного права , что даёт возможность применять к информации нормы Уголовного и Гражданского права в полном объёме.

К объектам гражданских прав относятся... информация, результаты интеллектуальной деятельности, в том числе исключительные права на них (интеллектуальная собственность)) ...” (ст. 128, ч.1 ГК РФ). Данная статья даёт возможность квалифицировать посягательства на сохранность и целостность информации, как преступление против собственности.

Для обеспечения чёткой правовой базы применения к информации норм вещного права в Законе “Об информации... (ст.5, ч.1)” вводится понятие: “документированная информация (документ) - зафиксированная на материальном носителе информации с реквизитами, позволяющими её идентифицировать”.

Разрешение различных конфликтов в области информационных отношений на базе действующего законодательства возможно только для документированной информации (ст. 4.1, ст.6.1). Информационные ресурсы, т.е. отдельные документы или массивы документов, в том числе и в информационных системах, являясь объектами отношений физических, юридических лиц и государства, подлежат обязательному учёту и защите как материального имущества собственника. Собственнику предоставляется право самостоятельно в пределах своей компетенции устанавливать режим защиты информационных ресурсов и доступа к ним (ст.6.7).

Закон “Об информации ” гласит:

-документированная информация ограниченного доступа по условиям её правового режима подразделяется на информацию, отнесённую к государственной тайне и конфиденциальную (ст.10, ч.2);

-конфиденциальная информация - документированная информация, доступ к которой ограничивается в соответствии с законодательством РФ (ст.2);

- персональные данные, включаемые в состав федеральных информационных ресурсов, совместного ведения, федерального и местного самоуправления, а также получаемые и собираемые негосударственными организациями, отнесены к категории конфиденциальной информации (ст.11, ч.1);

- не допускается сбор, хранение, использование и распространение информации о частной жизни , а равно информации, нарушающей личную тайну, тайну переписки, телефонных переговоров и т.д. физического лица без его согласия, кроме как на основании судебного решения (ст.11, ч.1).

Основные направления правового обеспечения ИБ


  1. Права собственности, владения и распоряжения информацией.

  2. Степень открытости информации.

  3. Порядок отнесения информации к категории ограниченного доступа.

  4. Организация работ по защите информации.

  5. Государственное лицензирование деятельности в области защиты информации.

Ответственность за преступления в области информационных технологий
Составы компьютерных преступлений (перечень признаков, характеризующих общественно опасное деяние как конкретное преступление) приведены в главе 28 Уголовного Кодекса РФ (введён в действие 1.1.1997 г.), которая называется “Преступление в сфере компьютерной информации ” и содержит 3 статьи :


  1. Неправомерный доступ к компьютерной информации” (ст. 272 );
Статья 272 предусматривает ответственность за несанкционированный доступ, если это повлекло уничтожение, блокировку, модификацию или копирование информации, нарушение работы вычислительных систем. Обычно несанкционированный доступ осуществляется умышленно (лишение свободы до 2-х лет, и до 5-ти лет, если преступление совершено группой лиц).

  1. Создание, использование и распространение вредоносных программ для ЭВМ (ст. 273).
Статья 273. Преступление, предусмотренное ч.1 ст. 273, может быть совершено умышленно и максимальным наказанием является лишение свободы до 3-х лет.

  1. Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети” (ст. 274).
Статья 274. Обычно нарушение правил эксплуатации осуществляется умышленно. Преступление наказывается лишением права занимать определённые должности или заниматься определённой деятельностью на срок до 5-ти лет.
Ответственность за нарушения могут нести лица, достигшие 16 лет.

Вид защиты

Метод защиты

От сбоев оборудования

    Архивирование файлов (со сжатием и без);

Резервирование файлов.

От случайной потери или искажения информации, хранящейся в компьютере

    Запрос на подтверждение выполнения команд, изменяющих файлы;

    установка специальных атрибутов документов и программ;

    возможность отмены неверного действия или восстановления ошибочно удаленного файла;

    разграничение доступа пользователей к ресурсам файловой системы.

От намеренного искажения, вандализма (компьютерных вирусов)

    Общие методы защиты информации;

    профилактические меры

    использование антивирусных программ.

От несанкционированного (нелегального) доступа к информации (ее использования, изменения, распространения)

    шифрование;

    паролирование;

    «электронные замки»;

    совокупность административных и правоохранительных мер.

При изучении этих вопросов следует дать определения таких понятий как лицензионное соглашение, авторское право, имущественное право. Стоит обратить внимание на относительно новое понятие – аудиовизуальное произведение. Это произведение, состоящее из зафиксированной серии связанных между собой кадров (с сопровождением или без сопровождения их звуком), предназначенного для зрительного или слухового восприятия с помощью соответствующих технических средств. Аудиовизуальные произведения включают кинематографические произведения и все произведения, выраженные средствами, аналогичные кинематографическим, независимо от способа их первоначальной или последующей фиксации.

2.7 Информационное управление

Слово «управление » в современном мире употребляется столь же часто, как и слово «информация». Управление это целенаправленный процесс, он должен обеспечить определенное поведение объекта управления, достижение определенной цели. Для этого нужен план управления, который реализуется через последовательность управляющих команд, передаваемых по прямой связи. Такая последовательность называется алгоритмом управления.

Основными компонентами управления являютсяцель управления ,субъект иобъект управления , среда, в которой осуществляется деятельность субъекта и объекта, управляющее воздействие, прямая и обратная связь, результат управления.

Кибернетика «искусство управления», основателем которой является Н.Винер . Основное положение кибернетики таково : общие принципы и закономерности управления справедливы для систем различной природы . Эта общность проявляется прежде всего в том, что управление по своей сути есть совокупность информационных процессов. Осуществление процесса управления сопряжено с передачей, накоплением, хранением и переработкой информации, характеризующей управляемый объект, ход процесса, внешние условия, программу деятельности и пр. Управление невозможно без того, чтобы объект управления (будь то машина или автоматическая линия; предприятие или войсковое соединение; живая клетка, синтезирующая белок, или мышца; текст, подлежащий переводу, или набор символов, преобразуемый в художественное произведение) и управляющее устройство (мозг и нервная ткань живого организма или управляющий автомат) обменивались между собой информацией.

В любом процессе управления всегда происходит взаимодействие двух подсистем – управляющей и управляемой . Если они соединены каналами прямой и обратной связи, то такую систему называют замкнутой или системой с обратной связью . По каналу прямой связи передаются сигналы (команды) управления, вырабатываемые в управляющей системе. Подчиняясь этим командам, управляемый объект осуществляет свои рабочие функции. В свою очередь, объект управления соединен с управляющей системой каналом обратной связи, по которому поступает информация о состоянии управляемого объекта. В управляющей системе эта информация используется для выработки новых управляющих воздействий.

Но иногда бывает так, что нарушается нормальное функционирование канала прямой или обратной связи. В этом случае система управления становится разомкнутой . Разомкнутая система оказывается неспособной к управлению. И в этом случае вряд ли можно ожидать достижения заданной цели деятельности.

Виды управления можно классифицировать следующим образом:

    по степени автоматизации: автоматическое, автоматизированное, неавтоматизированное управление;

    по учету фактора времени: управление в реальном масштабе времени, опросное (выборочное) управление, управление с задержкой;

    по виду управляющих воздействий: управление посредством команд, управление через алгоритм, управление на основе системы правил и пр.

Сущность кибернетического подхода к решению задачи управления сложными системами сводится к так называемой модели черного ящика . По отношению к исследуемой системе определяются лишь входные и выходные сигналы , описывается взаимосвязь между ними. Входные и выходные сигналы, независимо от их физической природы, интерпретируются как информация. Поэтому управление системой рассматривается как информационное взаимодействие с ней некоторого управляющего объекта.

Основным открытием кибернетической науки является принцип универсальности схемы управления с обратной связью . Эта модель управления распространяется на технические устройства, биологические и социальные системы.

Под системой управления понимается вся совокупность управляющих средств: управляющий объект, каналы прямой и обратной связи . Алгоритм управления является информационной компонентой системы управления.

Следует определить понятие самоуправляемой системы . Это некоторый единый объект, организм, в котором присутствуют все компоненты систем управления . Примерами таких систем являются живые организмы, наиболее совершенный из которых – человек.

Создание искусственных самоуправляемых систем – одна из сложнейших задач науки и техники. Робототехника – пример такого научно-технического направления.

Системы управления с использованием ЭВМ называются автоматизированными системами управления (АСУ). Как правило, АСУ ориентированы на управление деятельностью производственных коллективов, предприятий. Основная цель таких систем – быстро и точно представлять руководителям предприятия необходимую информацию для принятия управляющих решений. Задачи, решаемые средствами АСУ, относятся к области экономической кибернетики.

Автоматизированные системы управления комплекс технических и программных средств, обеспечивающих в тесном взаимодействии с отдельными специалистами или коллективами управление объектом в производственной, научной или общественной сфере.

Основное преимущество АСУ перед традиционными методами управления состоит в том, что для принятия необходимых решений управленческому персоналу предоставляется более полная, своевременная и достоверная информация в удобной для восприятия форме.

По функциям АСУ подразделяют на следующие виды:

    административно-организационные:

- системы управления предприятием (АСУП);

- отраслевые системы управления (ОАСУ);

    системы управления технологическими процессами (АСУТП):

- гибкие производственные системы (ГПС);

- системы подготовки производства (АСУПП);

- системы контроля качества продукции (АСК);

- системы управления станками с числовым программным обеспечением (ЧПУ);

    интегрированные системы, объединяющие перечисленные виды АСУ в различных комбинациях.

По результатам деятельности различают АСУ информационные, информационно-советующие, управляющие, самонастраивающиеся, самообучающиеся.

Важные компоненты АСУ – аппаратное обеспечение, программное обеспечение, информационное обеспечение, математическое обеспечение.

Информационное обеспечение АСУ охватывает всю документацию (правовую, нормативную, техническую, конструкторскую, технологическую, учетную), представленную в электронном виде и необходимую для управления производством, а также схемы ее движения.

Основными элементами АСУ являются автоматизированные рабочие места специалистов, объединенные в локальную корпоративную вычислительную сеть.

Автоматизированное рабочее место рабочее место специалиста, оснащенное компьютером или комплексом специализированных устройств, соответствующим программным обеспечением, которые позволяют автоматизировать часть выполняемых специалистом производственных операций.

Одна из основных целей автоматизации возможность для каждого сотрудника, относящегося к любому подразделению, получения информации в то время и в той форме, которые ему необходимы.

Особое внимание при внедрении АСУ уделяется человеческому фактору.

Любая из технических систем – лишь механизм для повышения эффективности управления , принятия правильных стратегических и тактических решений на основе своевременной и достоверной информации, выдаваемой компьютером. Этот механизм полезен при правильном, целесообразном использовании его человеком.

Угрозы безопасности информации и их классификация

Автоматизированные системы, обрабатывающие информацию, являются сложными техническими системами. Недостаточная надежность функционирования таких систем, сбои и отказы в работе тех или иных функциональных устройств, могут привести к потере информации.

В ряде случаев стоимость обрабатываемой информации значительно превосходит стоимость оборудования, входящего в состав автоматизированной системы. В таких ситуациях ставится задача сохранения информации даже в условиях производственных катастроф и стихийных бедствий.

Для того чтобы сформулировать задачи защиты информации от злоумышленников, необходимо представить себе их цели и возможности по достижению этих целей.

Обычно различают следующие цели нарушителя:

Незаконное завладение конфиденциальной информацией;

Модификация информации;

Уничтожение информации;

Нарушение функционирования АС;

Незаконное копирование программ (и другой ценной информации);

Отказ от информации

Под конфиденциальной информацией понимается информация, доступ к которой ограничен в соответствии с законодательством. Факт попадания такой информации злоумышленнику называют утечкой информации и говорят о защите информации от утечки. Утечка информации может быть разной по последствиям. Так, например, утечка информации, связанная с хищением носителя или даже компьютера в целом, очень быстро обнаруживается. В то же время негласная для законного владельца утечка информации наносит больший вред.

Модификация информации всегда подразумевается неявной для законного владельца информации. Модификация информации может проявляться по-разному. Например, в финансовом документе она может заключаться в "исправлении" номера счета, куда надо переслать деньги, или размера суммы, подлежащей перечислению по указанному адресу. В сетях с коммутацией пакетов модификация может заключаться в изъятии из канала связи части сообщения, изменение порядка следования частей сообщения. Наконец,

возможен повтор или посылка фальсифицированного сообщения, например, с указанием банку перечислить деньги.

Уничтожение информации может привести к краху вычислительной системы, если не были приняты профилактические меры по резервному копированию информации, и к временному выходу системы из строя при наличии резервных копий.

Под нарушением функционирования автоматизированной системы подразумевают (в отличие от уничтожения информации) скрытные действия, мешающие нормально функционировать системе. Такие действия могут осуществляться захватом ресурсов, запуска на решение посторонних задач или повышением приоритетности задач, не требующих срочного решения. К указанным вмешательствам в работу наиболее чувствительны информационные системы, работающие в режиме реального времени или в режиме оперативного принятия решений.

Говоря о незаконном копировании программ , имеют в виду копирование не конфиденциальной информации, а информации, распространяемой па коммерческой или другой договорной основе. Незаконное копирование программ и другой ценной информации рассматривается как нарушение авторских прав разработчиков программного продукта и баз данных.

Отказ от информации характерен для следующих ситуаций взаимодействия двух удаленных абонентов в телекоммуникационной сети. Если абонент А посылает абоненту В сообщение, а позднее отказывается от факта отправки такого сообщения, то говорят об отказе от факта передачи сообщения . Если абонент В получив сообщение от абонента А, позднее отказывается от факта получения сообщения, то говорят об отказе от факта получения сообщения . Первый случай реален, например, если посланное сообщение содержало некоторые обязательства отправителя по отношению к получателю, а второе – если полученное сообщение содержало некоторые поручения для получателя. Отказ от информации делает практически невозможным взаимодействие удаленных абонентов с использованием прогрессивных компьютерных и сетевых технологий.

При рассмотрении целей злоумышленника необходимо отметить следующее обстоятельство. При создании той или иной системы защиты информации в автоматизированной системе или сети, злоумышленник лишается возможности достичь своих целей наиболее простыми и доступными (как в отсутствие защиты) средствами. В новых условиях злоумышленник постарается исследовать внедренную систему защиты и найти пути ее преодоления. При этом у него появляются новые цели: узнать ключи или пароли, модифицировать программное обеспечение системы защиты информации и тем самым полностью или частично нейтрализовать защитный механизм, обойти его. Такие цели носят по сравнению со сформулированными выше промежуточный характер. Но эти цели надо обязательно учитывать при проектировании и внедрении средств защиты информации.

В практической деятельности выделяют следующие основные виды защиты информации:

– защита информации от несанкционированного доступа:

– защита информации от перехвата в системах связи.

– защита юридической значимости электронных документов.

– защита конфиденциальной информации от утечки по каналам побочных электромагнитных излучении и наводок.

– защита информации от компьютерных вирусов и других опасных воздействии по каналам распространения программ.

– защита от несанкционированного копирования и распространения программ и ценной компьютерной информации.

Защита конфиденциальной и ценной информации от несанкционированного доступа (НСД) призвана обеспечить решение одной из двух наиболее важных задач защиты имущественных прав владельцев и пользователей ЭВМ – защиту собственности, воплощенной в обрабатываемой информации от всевозможных злоумышленных покушении, которые могут нанести существенный экономический и другой материальный и нематериальный ущерб К ней примыкает задача защиты государственных секретов, где в качестве собственника информации выступает государство Основной целью этого вида защиты является обеспечения конфиденциальности, целостности и доступности информации В части технической реализации защита от НСД сводится к задаче разграничения функциональных полномочии и доступа к информации

Существуют два принципа формулирования правил разграничения доступа дискреционный и мандатный.

Первый из них базируется на матричных моделях.

Пусть имеется некоторое множество поименованных объектов доступа (файлы, каталоги, устройства, и тому подобное) и некоторое множество субъектов доступа (пользователи, их процессы). Правила разграничения доступа тогда записываются в виде матрицы, каждый из столбцов которой соответствует одному объекту доступа, а каждая строка соответствует одному субъекту доступа. На пересечении i -го столбца и j -ой строки записываются права доступа j -го субъекта доступа к i -му объекту доступа (читать, записывать, удалять, и тому подобное).

На практике системы разграничения доступа, базирующиеся на матричных моделях, реализуются обычно в виде специальных компонент универсальных ОС или СУБД, либо в виде самостоятельных программных изделий. Существенной особенностью матричных средств разграничения доступа для наиболее используемых универсальных ОС является принципиальная децентрализованность механизмов диспетчера доступа, что приводит к невозможности строгого выполнения требований верифицируемости, защищенности и полноты контроля указанных механизмов.

Мандатный принцип разграничения доступа основан на том, что все объекты доступа наделяются метками конфиденциальности (например по грифам секретности: ""особой важности", "совершенно секретно", "секретно", "несекретно"), а для каждого субъекта доступа определяется уровень допуска (например уровень секретности документов, с которыми субъекту разрешено работать). Тогда при общении пользователя с системой чтение разрешается только по отношению к информации соответствующего уровня конфиденциальности или ниже. А запись информации разрешается только для информации соответствующего уровня конфиденциальности или выше. Такие правила обеспечивают при прохождении информации не понижение уровня ее конфиденциальности.

Отметим, что в наиболее ответственных случаях используются оба принципа формулирования правил разграничения доступа.

Сама процедура доступа пользователя (в соответствии с правилами разграничения доступа) происходит в три этапа: идентификация, аутентификация и авторизация.

Идентификация заключается в предъявлении пользователем системе своего идентификатора (имени) и проверке наличия в памяти системы этого имени.

Аутентификация заключается в проверке принадлежности субъекту доступа предъявленного им идентификатора (проверка подлинности). Для реализации процедуры аутентификации используется идентификатор субъекта доступа, который является либо его секретом (пароль и тому подобное), либо является уникальным для субъекта и гарантировано неподделываемым (биометрические характеристики).

Простейший способ защиты автоматизированной системы от удаленного доступа несанкционированных пользователей – это отказ от работы в сети, обеспечение физической защиты от всех внешних сетевых соединений. В наиболее ответственных случаях так и поступают.

Однако в силу практической невозможности такой изоляции в большинстве случаев в настоящее время, необходимо предусмотреть простые и ясные правила осуществления коммуникаций между локальными сетями различной степени защищенности, или даже, защищенной сети с незащищенной. Защищенная локальная сеть при этом представляется как бы находящейся внутри периметра, поддерживающего секретность. Внутри периметра служба контроля доступа и другие защитные механизмы определяют: кто и к какой информации допущен. В такой среде шлюзовая система, которая иногда называется брандмауэром, маршрутизатором или модулем защищенного интерфейса, может отделять защищенные системы или сети от незащищенных систем или сетей извне. Незащищенная система может общаться с защищенной только через единственный канал связи, контролируемый защищенным шлюзом. Шлюз контролирует трафик как извне, так и наружу, и эффективно изолирует защищенную сеть от внешнего мира. Благодаря тому, что брандмауэр защищает другие компьютеры, находящиеся внутри периметра, защита может быть сконцентрирована в брандмауэре.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Й. Историография

ЙЙ. Основная часть

2.1 Виды умышленных угроз информации

2.2 Методы защиты информации

Заключение

Список литературы

Введение

Информация играет особую роль в процессе развития цивилизации. Владение информационными ресурсами создает предпосылки прогрессивного развития общества. Искажение информации, блокирование процесса ее получения или внедрение ложной информации, способствуют принятию ошибочных решений.

Еще 25-30 лет назад задача защиты информации могла быть эффективно решена с помощью организационных мер и отдельных программно - аппаратах средств разграничения доступа и шифрования. Появление персональных ЭВМ, локальных и глобальных сетей, спутниковых каналов связи, эффективных технической разведки и конфиденциальной информации существенно обострило проблему защиты информации.

Вместе с тем, информация это весьма специфический продукт, который может быть как в материальном, так и в нематериальном (нефиксированном) виде. Поэтому, без четких границ, определяющих информацию, как объект права, применение любых законодательных норм по отношению к ней - весьма проблематично.

До недавнего времени это было довольно важной причиной, усложняющей регулирование правовых отношений в информационной сфере.

Основные гарантии информационных прав содержатся в Конституции РФ. Несмотря на то, что Конституция является законом прямого действия, применить ее положения к отдельным видам отношений без последующей конкретизации было бы затруднительно.

Отдельные виды отношений регулируются специальными законами, которые, как правило, так же не содержат норм, непосредственно устанавливающих правила информационного взаимодействия.

Правила информационного взаимодействия, возникающего в ходе осуществления конкретных отношений, регулируются на уровне постановлений Правительства, либо ведомственных нормативных актов. При этом, на данном уровне, как правило, создается нормативный акт, обязательный для участников этих отношений, а его устанавливаемые в нем правила доводятся до сотрудников или структурных подразделений соответствующего государственного органа путем издания инструкции или рассылки письма.

Рост количества и качества угроз безопасности информации в компьютерных системах не всегда приводит к адекватному ответу в виде создания надежной системы и безопасных информационных технологий. В большинстве коммерческих и государственных организаций, не говоря о простых пользователях, в качестве средств защиты используются только антивирусные программы и разграничение прав доступа пользователей на основе паролей.

Под угрозой безопасности информации понимаются события или действия, которые могут привести к искажению, несанкционированному использованию или даже к разрушению информационных ресурсов управляемой системы, а также программных и аппаратных средств.

Й . Историография

Термин «информация» происходит от латинского information, означающего «ознакомление, разъяснение, представление, понятие» и первоначально был связан исключительно с коммуникативной деятельностью людей. В России он появился, по-видимому, в петровскую эпоху, но широкого распространения не получил. Лишь в начале ХХ века он стал использоваться в документах, книгах, газетах и журналах, и употреблялся в смысле сообщения, осведомления, сведения о чем-либо.

Однако, стремительное развитие в 20-х годах прошлого века средств и систем связи, зарождение информатики и кибернетики настоятельно потребовали научного осмысления понятия информации и разработки соответствующего теоретической базы. Это привело к формированию и развитию целого «семейства» самых различных учений об информации и, соответственно, подходов к определению самого понятия информации.

История учений об информации началась с рассмотрения её математического (синтаксического) аспекта, связанного с количественным показателями (характеристиками) информационных систем.

В 1928 году Р.Хартли в своей работе «Transmission of Information» определили меру количества информации для равномерных событий, а в 1948 году Клод Шеннон предложил формулу определения количества информации для совокупности событий различных вероятностями. И хотя ещё в 1933 году вышла в свет работа нашего выдающего учёного В.А. Котельникова о квантовании электрических сигналов, содержащая знаменитую «теорию отчётов», в мировой научной литературе считается, что именно в 1948 г.- это год зарождения теории информации и количественного подхода к информационным процессам.

Сформулированная К.Шенноном статистическая теория информации оказала заметное влияние на различные области знаний. Было замечено, что формула Шеннона очень похожа на используемую в физике формулу Больцмана для статистического определения энтропии, взятую с обратным знаком. Это позволило Л. Бриллюну охарактеризовать информацию как отрицательную энтропию (негэнтропию).

Значение статистического подхода к определению понятию информации заключалось ещё и в том, что в его рамках было получено первое определение информации, удовлетворительное, в том числе, и с философской точки зрения: информация есть устранения неопределенность. По замечанию А.Д. Урсула «Если в наших знаниях о каком-либо предмете существует неясность, неопределенность, а получив новые сведения об этом предмете мы можем уже более определенно судить о нём, то это значит, что сообщение содержало в себе информацию».

Однако, выделения в информации только количественного её аспекта оказалось явно недостаточно. Как верно заметил В.А. Бокарев, в статистической теории «сделавших эту теорию, с одной стороны, предварительно широкой, но с другой - мешающее ей стать наукой, исследующей информацию всесторонне». Всё это заставило искать иные, более универсальные подходы к определению понятия информации.

Таким, по существу другим, дополнительным подходов, стал подход кибернетический, охватывающий структуры и связи систем. С появлением кибернетики, как науки «об общих законах преобразования информации в сложных управляющих системах», способах восприятия, хранения, переработки, и использования информации, термин «информация» стал научным понятием, своего рода инструментом исследования процессов управления.

ЙЙ .Основная часть

2.1 Виды умышленных угроз информации

Пассивные угрозы направлены в основном на несанкционированное использование информационных ресурсов ИС, не оказывая при этом влияния на ее функционирование. Например, несанкционированный доступ к базам данных, прослушивание каналов связи и т.д.

Активные угрозы имеют целью нарушение нормального функционирования ИС путем целенаправленного воздействия на ее компоненты. К активным угрозам относятся, например, вывод из строя компьютера или его операционной системы, искажение сведений в БнД, разрушение ПО компьютеров, нарушение работы линий связи и т.д. Источником активных угроз могут быть действия взломщиков, вредоносные программы и т.п.

Умышленные угрозы подразделяются также на внутренние (возникающие внутри управляемой организации) и внешние.

Внутренние угрозы чаще всего определяются социальной напряженностью и тяжелым моральным климатом.

Внешние угрозы могут определяться злонамеренными действиями конкурентов, экономическими условиями и другими причинами (например, стихийными бедствиями). По данным зарубежных источников, получил широкое распространение промышленный шпионаж -- это наносящие ущерб владельцу коммерческой тайны незаконные сбор, присвоение и передача сведений, составляющих коммерческую тайну, лицом, не уполномоченным на это ее владельцем.

К основным угрозам безопасности информации и нормального функционирования ИС относятся:

* утечка конфиденциальной информации;

* компрометация информации;

* несанкционированное использование информационных ресурсов;

* ошибочное использование информационных ресурсов;

* несанкционированный обмен информацией между абонентами;

* отказ от информации;

* нарушение информационного обслуживания;

* незаконное использование привилегий.

Утечка конфиденциальной информации -- это бесконтрольный выход конфиденциальной информации за пределы ИС или круга лиц, которым она была доверена по службе или стала известна в процессе работы. Эта утечка может быть следствием:

* разглашения конфиденциальной информации;

* ухода информации по различным, главным образом техническим, каналам;

* несанкционированного доступа к конфиденциальной информации различными способами.

Разглашение информации ее владельцем или обладателем есть умышленные или неосторожные действия должностных лиц и пользователей, которым соответствующие сведения в установленном порядке были доверены по службе или по работе, приведшие к ознакомлению с ним лиц, не допущенных к этим сведениям.

Возможен бесконтрольный уход конфиденциальной информации по визуально-оптическим, акустическим, электромагнитным и другим каналам.

Несанкционированный доступ -- это противоправное преднамеренное овладение конфиденциальной информацией лицом, не имеющим права доступа к охраняемым сведениям.

Наиболее распространенными путями несанкционированного доступа к информации являются:

* перехват электронных излучений;

* применение подслушивающих устройств (закладок);

* дистанционное фотографирование;

* перехват акустических излучений и восстановление текста принтера;

* чтение остаточной информации в памяти системы после выполнения санкционированных запросов;

* копирование носителей информации с преодолением мер защиты

* маскировка под зарегистрированного пользователя;

* маскировка под запросы системы;

* использование программных ловушек;

* использование недостатков языков программирования и операционных систем;

* незаконное подключение к аппаратуре и линиям связи специально разработанных аппаратных средств, обеспечивающих доступ информации;

* злоумышленный вывод из строя механизмов защиты;

* расшифровка специальными программами зашифрованной: информации;

* информационные инфекции.

Перечисленные пути несанкционированного доступа требуют достаточно больших технических знаний и соответствующих аппаратных или программных разработок со стороны взломщика. Например, используются технические каналы утечки -- это физические пути от источника конфиденциальной информации к злоумышленнику, посредством которых возможно получение охраняемых сведений. Причиной возникновения каналов утечки являются конструктивные и технологические несовершенства схемных решений либо эксплуатационный износ элементов. Все это позволяет взломщикам создавать действующие на определенных физических принципах преобразователи, образующие присущий этим принципам канал передачи информации-- канал утечки.

Однако есть и достаточно примитивные пути несанкционированного доступа:

* хищение носителей информации и документальных отходов; * инициативное сотрудничество;

* склонение к сотрудничеству со стороны взломщика; * выпытывание;

* подслушивание;

* наблюдение и другие пути.

Любые способы утечки конфиденциальной информации могут привести к значительному материальному и моральному ущербу как для организации, где функционирует ИС, так и для ее пользователей.

Менеджерам следует помнить, что довольно большая часть причин и условий, создающих предпосылки и возможность неправомерного овладения конфиденциальной информацией, возникает из-за элементарных недоработок руководителей организаций и их сотрудников. Например, к причинам и условиям, создающим предпосылки для утечки коммерческих секретов, могут относиться:

* недостаточное знание работниками организации правил защиты конфиденциальной информации и непонимание необходимости их тщательного соблюдения;

* использование неаттестованных технических средств обработки конфиденциальной информации;

* слабый контроль за соблюдением правил защиты информации правовыми, организационными и инженерно-техническими мерами;

* текучесть кадров, в том числе владеющих сведениями, составляющими коммерческую тайну;

* организационные недоработки, в результате которых виновника- ми утечки информации являются люди -- сотрудники ИС и ИТ.

Большинство из перечисленных технических путей несанкционированного доступа поддаются надежной блокировке при правильно разработанной и реализуемой на практике системе обеспечения безопасности. Но борьба с информационными инфекциями представляет значительные трудности, так как существует и постоянно разрабатывается огромное множество вредоносных программ, цель которых -- порча информации в БД и ПО компьютеров. Большое число разновидностей этих программ не позволяет разработать постоянных и надежных средств защиты против них.

Вредоносные программы классифицируются следующим образом: Логические бомбы, как вытекает из названия, используются для искажения или уничтожения информации, реже с их помощью совершаются кража или мошенничество. Манипуляциями с логическими бомбами обычно занимаются чем-то недовольные служащие, собирающиеся покинуть данную организацию, но это могут быть и консультанты, служащие с определенными политическими убеждениями и т.п.

Реальный пример логической бомбы: программист, предвидя свое увольнение, вносит в программу расчета заработной платы определенные изменения, которые начинают действовать, когда его фамилия исчезнет из набора данных о персонале фирмы.

Троянский конь -- программа, выполняющая в дополнение к основным, т. е. запроектированным и документированным действиям, действия дополнительные, не описанные в документации. Аналогия с древнегреческим троянским конем оправдана -- и в том и в другом случае в не вызывающей подозрения оболочке таится угроза. Троянский конь представляет собой дополнительный блок команд, тем или иным образом вставленный в исходную безвредную программу, которая затем передается (дарится, продается, подменяется) пользователям ИС. Этот блок команд может срабатывать при наступлении некоторого условия (даты, времени, по команде извне и т.д.). Запустивший такую программу подвергает опасности как свои файлы, так и всю ИС в целом. Троянский конь действует обычно в рамках полномочий одного пользователя, но в интересах другого пользователя или вообще постороннего человека, личность которого установить порой невозможно.

Наиболее опасные действия троянский конь может выполнять, если запустивший его пользователь обладает расширенным набором привилегий. В таком случае злоумышленник, составивший и внедривший троянского коня, и сам этими привилегиями не обладающий, может выполнять несанкционированные привилегированные функции чужими руками.

Вирус -- программа, которая может заражать другие программы путем включения в них модифицированной копии, обладающей способностью к дальнейшему размножению.

Считается, что вирус характеризуется двумя основными особенностями:

1) способностью к саморазмножению;

2) способностью к вмешательству в вычислительный процесс (т. е. к получению возможности управления).

Червь -- программа, распространяющаяся через сеть и не оставляющая своей копии на магнитном носителе. Червь использует механизмы поддержки сети для определения узла, который может быть заражен. За- тем с помощью тех же механизмов передает свое тело или его часть на этот узел и либо активизируется, либо ждет для этого подходящих условий. Наиболее известный представитель этого класса -- вирус Морриса (червь Морриса), поразивший сеть Internet в 1988 г. Подходящей средой распространения червя является сеть, все пользователи которой считаются дружественными и доверяют друг другу, а защитные механизмы отсутствуют. Наилучший способ защиты от червя -- принятие мер предосторожности против несанкционированного доступа к сети.

Захватчик паролей -- это программы, специально предназначенные для воровства паролей. При попытке обращения пользователя к терминалу системы на экран выводится информация, необходимая для окончания сеанса работы. Пытаясь организовать вход, пользователь вводит имя и пароль, которые пересылаются владельцу программы-захватчика, после чего выводится сообщение об ошибке, а ввод и управление возвращаются к операционной системе. Пользователь, думающий, что допустил ошибку при наборе пароля, повторяет вход и получает доступ к системе. Однако его имя и пароль уже известны владельцу программы-захватчика. Перехват пароля возможен и другими способами. Для предотвращения этой угрозы перед входом в систему необходимо убедиться, что вы вводите имя и пароль именно системной программе ввода, а не какой-нибудь другой. Кроме того, необходимо неукоснительно придерживаться правил использования паролей и работы с системой. Большинство нарушений происходит не из-за хитроумных атак, а из-за элементарной небрежности. Соблюдение специально разработанных правил использования паролей -- необходимое условие надежной защиты.

Компрометация информации (один из видов информационных инфекций). Реализуется, как правило, посредством несанкционированных изменений в базе данных в результате чего ее потребитель вынужден либо отказаться от нее, либо предпринимать дополнительные усилия для выявления изменений и восстановления истинных сведений. При использовании скомпрометированной информации потребитель подвергается опасности принятия неверных решений.

Несанкционированное использование информационных ресурсов, с одной стороны, является последствиями ее утечки и средством ее компрометации. С другой стороны, оно имеет самостоятельное значение, так как может нанести большой ущерб управляемой системе (вплоть до полного выхода ИТ из строя) или ее абонентам.

Ошибочное использование информационных ресурсов будучи санкционированным тем не менее может привести к разрушению, утечке или компрометации указанных ресурсов. Данная угроза чаще всего является следствием ошибок, имеющихся в ПО ИТ.

Несанкционированный обмен информацией между абонентами может привести к получению одним из них сведений, доступ к которым ему запрещен. Последствия -- те же, что и при несанкционированном доступе.

Отказ от информации состоит в непризнании получателем или отправителем этой информации фактов ее получения или от- правки. Это позволяет одной из сторон расторгать заключенные финансовые соглашения техническим путем, формально не отказываясь от них, нанося тем самым второй стороне значительный ущерб.

Нарушение информационного обслуживания -- угроза, источником которой является сама ИТ. Задержка с предоставлением информационных ресурсов абоненту может привести к тяжелым для него последствиям. Отсутствие у пользователя своевременных данных, необходимых для принятия решения, может вызвать его нерациональные действия.

Незаконное использование привилегий. Любая защищенная система содержит средства, используемые в чрезвычайных ситуациях, или средства которые способны функционировать с нарушением существующей политики безопасности. Например, на случай внезапной проверки пользователь должен иметь возможность доступа ко всем наборам системы. Обычно эти средства используются администраторами, операторами, системными программистами и другими пользователями, выполняющими специальные функции.

Большинство систем защиты в таких случаях используют наборы привилегий, т. е. для выполнения определенной функции требуется определенная привилегия. Обычно пользователи имеют минимальный набор привилегий, администраторы -- максимальный.

Наборы привилегий охраняются системой защиты. Несанкционированный (незаконный) захват привилегий возможен при наличии ошибок в системе защиты, но чаще всего происходит в процессе управления системой защиты, в частности при небрежном пользовании привилегиями.

Строгое соблюдение правил управления системой защиты, соблюдение принципа минимума привилегий позволяет избежать таких нарушений.

2.2 Методы защиты информации

В сентябре 2000 года президентом России была подписана: «Доктрина информационной безопасности РФ», на оснований которой был принят закон об информации. В этом законе выделяются следующие виды информации которые принадлежат защите со стороны государства:

Криптографические методы:

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем еще недавно считавшихся практически не раскрываемыми.

Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

1.Симметричные криптосистемы.

2.Криптосистемы с открытым ключом.

3.Системы электронной подписи.

4.Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Системы с открытым ключом :

Как бы ни были сложны и надежны криптографические системы - их слабое мест при практической реализации - проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.

Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.

Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.

Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y =f(x ), то нет простого пути для вычисления значения x.

Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.

В самом определении необратимости присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени.

Поэтому чтобы гарантировать надежную защиту информации, к системам с открытым ключом (СОК) предъявляются два важных и очевидных требования:

1. Преобразование исходного текста должно быть необратимым и исключать его восстановление на основе открытого ключа.

2. Определение закрытого ключа на основе открытого также должно быть невозможным на современном технологическом уровне. При этом желательна точная нижняя оценка сложности (количества операций) раскрытия шифра.

Алгоритмы шифрования с открытым ключом получили широкое распространение в современных информационных системах. Так, алгоритм RSA стал мировым стандартом де-факто для открытых систем и рекомендован МККТТ.

Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

Разложение больших чисел на простые множители.

Вычисление логарифма в конечном поле.

Вычисление корней алгебраических уравнений.

Здесь же следует отметить, что алгоритмы криптосистемы с открытым ключом (СОК) можно использовать в трех назначениях.

1. Как самостоятельные средства защиты передаваемых и хранимых данных.

2. Как средства для распределения ключей. Алгоритмы СОК более трудоемки, чем традиционные криптосистемы. Поэтому часто на практике рационально с помощью СОК распределять ключи, объем которых как информации незначителен. А потом с помощью обычных алгоритмов осуществлять обмен большими информационными потоками.

Средства аутентификации пользователей.

Электронная подпись

В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

В чем состоит проблема аутентификации данных?

В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследует две цели. Во-первых, получатель имеет возможность убедиться в истинности письма, сличив подпись с имеющимся у него образцом. Во-вторых, личная подпись является юридическим гарантом авторства документа. Последний аспект особенно важен при заключении разного рода торговых сделок, составлении доверенностей, обязательств и т.д.

Если подделать подпись человека на бумаге весьма непросто, а установить авторство подписи современными криминалистическими методами - техническая деталь, то с подписью электронной дело обстоит иначе. Подделать цепочку битов, просто ее скопировав, или незаметно внести нелегальные исправления в документ сможет любой пользователь.

С широким распространением в современном мире электронных форм документов (в том числе и конфиденциальных) и средств их обработки особо актуальной стала проблема установления подлинности и авторства безбумажной документации.

В разделе криптографических систем с открытым ключом было показано, что при всех преимуществах современных систем шифрования они не позволяют обеспечить аутентификацию данных. Поэтому средства аутентификации должны использоваться в комплексе и криптографическими алгоритмами.

Иногда нет необходимости зашифровывать передаваемое сообщение, но нужно его скрепить электронной подписью. В этом случае текст шифруется закрытым ключом отправителя и полученная цепочка символов прикрепляется к документу. Получатель с помощью открытого ключа отправителя расшифровывает подпись и сверяет ее с текстом. В 1991 г. Национальный институт стандартов и технологии (NIST) предложил для появившегося тогда алгоритма цифровой подписи DSA (Digital Signature Algorithm) стандарт DSS (Digital Signature Standard), в основу которого положены алгоритмы Эль-Гамаля и RSA.

Методы защиты информации в Internet :

Сегодня самая актуальная для Internet тема - проблема защиты информации. Сеть стремительно развивается в глобальных масштабах, и все большее распространение получают системы внутренних сетей (intranet, интрасети). Появление на рынке новой огромной ниши послужило стимулом как для пользователей, так и для поставщиков сетевых услуг к поиску путей повышения безопасности передачи информации через Internet.

Проблема безопасности в Internet подразделяется на две категории: общая безопасность и вопросы надежности финансовых операций. Успешное разрешение проблем в сфере финансовой деятельности могло бы открыть перед Internet необозримые перспективы по предоставлению услуг для бизнеса. В борьбу за решение этой проблемы включились такие гиганты в области использовани кредитных карточек, как MasterCard и Visa, а также лидеры компьютерной индустрии Microsoft и Netscape. Все это касается "денежных" дел; наша же статья посвящена проблеме общей безопасности.

Задача исследований в этой области - решение проблемы конфиденциальности. Рассмотрим для примера передачу сообщений электронной почты с одного SMTP-сервера на другой. В отдельных случаях эти сообщения просто переписываются с одного жесткого диска на другой как обыкновенные текстовые файлы, т. е. прочитать их смогут все желающие. Образно говоря, механизм доставки электронной почты через Internet напоминает ситуацию, когда постиранное белье вывешивается на улицу, вместо того чтобы отжать его в стиральной машине. Не важно, содержатся ли в послании какая-то финансовая информация или нет; важно следующее - любая пересылаемая по Internet информаци должна быть недоступна для посторонних.

Кроме конфиденциальности пользователей также волнует вопрос гарантий, с кем они сейчас "беседуют". Им необходима уверенность, что сервер Internet, с которым у них сейчас сеанс связи, действительно является тем, за кого себя выдает; будь то сервер World-Wide Web, FTP, IRC или любой другой. Не составляет особого труда имитировать (то ли в шутку, то ли с преступными намерениями) незащищенный сервер и попытаться собрать всю информацию о вас. И, конечно же, поставщики сетевых услуг также хотели бы быть уверенными, что лица, обращающиеся к ним за определенными ресурсами Internet, например, электронной почтой и услугами IRC, действительно те, за кого себя выдают.

Метод парольной защиты:

Законность запроса пользователя определяется по паролю, представляющему собой, как правило, строку знаков. Метод паролей считается достаточно слабым, так как пароль может стать объектом хищения, перехвата, перебора, угадывания. Однако простота метода стимулирует поиск путей его усиления.

Для повышения эффективности парольной защиты рекомендуется:

выбирать пароль длиной более 6 символов, избегая распространенных, легко угадываемых слов, имен, дат и т.п.;

1.использовать специальные символы;

2.пароли, хранящиеся на сервере, шифровать при помощи односторонней функции;

3.файл паролей размещать в особо защищаемой области ЗУ ЭВМ, закрытой для чтения пользователями;

4.границы между смежными паролями маскируются;

5.комментарии файла паролей следует хранить отдельно от файла;

6.периодически менять пароли;

7.предусмотреть возможность насильственной смены паролей со стороны системы через определенный промежуток времени;

8.использовать несколько пользовательских паролей: собственно пароль, персональный идентификатор, пароль для блокировки/разблокировки аппаратуры при кратковременном отсутствии и т.п.

9.В качестве более сложных парольных методов используется случайная выборка символов пароля и одноразовое использование паролей. В первом случае пользователю (устройству) выделяется достаточно длинный пароль, причем каждый раз для опознавания используется часть пароля, выбираемая случайно. При одноразовом использовании пароля пользователю выделяется не один, а большое количество паролей, каждый из которых используется по списку или по случайной выборке один раз. В действительно распределенной среде, где пользователи имеют доступ к нескольким серверам, базам данных и даже обладают правами удаленной регистрации, защита настолько осложняется, что администратор все это может увидеть лишь в кошмарном сне.

Административные меры защиты:

Проблема защиты информации решается введением контроля доступа и разграничением полномочий пользователя.

Распространённым средством ограничения доступа (или ограничения полномочий) является система паролей. Однако оно ненадёжно. Опытные хакеры могут взломать эту защиту, «подсмотреть» чужой пароль или войти в систему путём перебора возможных паролей, так как очень часто для них используются имена, фамилии или даты рождения пользователей. Более надёжное решение состоит в организации контроля доступа в помещения или к конкретному ПК в ЛВС с помощью идентификационных пластиковых карточек различных видов.

Использование пластиковых карточек с магнитной полосой для этих целей вряд ли целесообразно, поскольку, её можно легко подделать. Более высокую степень надёжности обеспечивают пластиковые карточки с встроенной микросхемой - так называемые микропроцессорные карточки (МП - карточки, smart - card). Их надёжность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Кроме того, при производстве карточек в каждую микросхему заносится уникальный код, который невозможно продублировать. При выдаче карточки пользователю на неё наносится один или несколько паролей, известных только её владельцу. Для некоторых видов МП - карточек попытка несанкционированного использования заканчивается её автоматическим «закрытием». Чтобы восстановить работоспособность такой карточки, её необходимо предъявить в соответствующую инстанцию.

Установка специального считывающего устройства МП - карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Защита корпоративной информации:

Однако при решении этой проблемы предприятия часто идут на поводу у компаний-подрядчиков, продвигающих один или несколько продуктов, решающих, как правило, частные задачи. Ниже рассмотрим наиболее общие подходы к комплексному решению задачи обеспечения безопасности информации.

Наиболее типичной ошибкой при построении системы защиты является стремление защитить всё и от всего сразу. На самом деле определение необходимой информации (файлов, каталогов, дисков) и иных объектов информационной структуры, которые требуется защитить - первый шаг в построении системы информационной безопасности. С определения этого перечня и следует начать: следует оценить, во сколько может обойтись потеря (удаление или кража) той или иной базы данных или, например, простой одной рабочей станции в течение дня.

Второй шаг - определение источников угроз. Как правило, их несколько. Выделить источник угроз - значит, оценить его цели (если источник преднамеренный) или возможное воздействие (непреднамеренный), вероятность (или интенсивность) его появления. Если речь идет о злоумышленных действиях лица (или группы лиц), то требуется оценить его организационные и технические возможности для доступа к информации (ведь злоумышленник может быть и сотрудником фирмы).

После определения источника угроз можно сформулировать угрозы безопасности информации. То есть что с информацией может произойти. Как правило, принято различать следующие группы угроз:

§ несанкционированный доступ к информации (чтение, копирование или изменение информации, ее подлог и навязывание);

§ нарушение работоспособности компьютеров и прикладных программ

§ уничтожение информации.

В каждой из этих трех групп можно выделить десятки конкретных угроз, однако пока на этом остановимся. Заметим только, что угрозы могут быть преднамеренными и случайными, а случайные, в свою очередь, естественными (например, стихийные бедствия) и искусственными (ошибочные действия персонала). Случайные угрозы, в которых отсутствует злой умысел, обычно опасны только в плане потери информации и нарушения работоспособности системы, от чего достаточно легко застраховаться. Преднамеренные же угрозы более серьезны с точки зрения потери для бизнеса, ибо здесь приходится бороться не со слепым (пусть и беспощадным в своей силе) случаем, но с думающим противником.

Построение системы защиты полезно проводить с принципами защиты, которые достаточно универсальны для самых разных предметных областей (инженерное обеспечение в армии, физическая безопасность лиц и территорий, и т. д.)

§ Адекватность (разумная достаточность). Совокупная стоимость защиты (временные, людские и денежные ресурсы) должна быть ниже стоимости защищаемых ресурсов. Если оборот компании составляет 10 тыс. долларов в месяц, вряд ли есть смысл развертывать систему на миллион долларов (так, же как и наоборот).

§ Системность. Важность этого принципа особо проявляется при построении крупных систем защиты. Он состоит в том, что система защиты должна строиться не абстрактно (защита от всего), а на основе анализа угроз, средств защиты от этих угроз, поиска оптимального набора этих средств и построения системы.

§ Прозрачность для легальных пользователей. Введение механизмов безопасности (в частности аутентификации пользователей) неизбежно приводит к усложнению их действий. Тем не менее, никакой механизм не должен требовать невыполнимых действий (например, еженедельно придумывать 10-значный пароль и нигде его не записывать) или затягивать процедуру доступа к информации.

§ Равностойкость звеньев. Звенья - это элементы защиты, преодоление любого из которых означает преодоление всей защиты. Понятно, что нельзя слабость одних звеньев компенсировать усилением других. В любом случае, прочность защиты (или ее уровня, см. ниже) определяется прочностью самого слабого звена. И если нелояльный сотрудник готов за 100 долларов «скинуть на дискету» ценную информацию, то злоумышленник вряд ли будет выстраивать сложную хакерскую атаку для достижения той же цели.

§ Непрерывность. В общем-то, та же равностойкость, только во временной области. Если мы решаем, что будем что-то и как-то защищать, то надо защищать именно так в любой момент времени. Нельзя, например, решить по пятницам делать резервное копирование информации, а в последнюю пятницу месяца устроить «санитарный день». Закон подлости неумолим: именно в тот момент, когда меры по защите информации будут ослаблены, произойдет то, от чего мы защищались. Временный провал в защите, так же, как и слабое звено, делает ее бессмысленной.

§ Многоуровневость. Многоуровневая защита встречается повсеместно, достаточно побродить по руинам средневековой крепости. Зачем защита строится в несколько уровней, которые должен преодолевать как злоумышленник, так и легальный пользователь (которому, понятно, это делать легче)? К сожалению, всегда существует вероятность того, что какой-то уровень может быть преодолен либо в силу непредвиденных случайностей, либо с ненулевой вероятностью. Простая математика подсказывает: если один уровень гарантирует защиту в 90%, то три уровня (ни в коем случае не повторяющих друг друга) дадут вам 99,9%. Это, кстати, резерв экономии: путем эшелонирования недорогих и относительно ненадежных средств защиты можно малой кровью добиться очень высокой степени защиты.

Учет этих принципов поможет избежать лишних расходов при построении системы защиты информации и в то же время добиться действительно высокого уровня информационной безопасности бизнеса.

Оценка эффективности систем защиты программного обеспечения

Системы защиты ПО широко распространены и находятся в постоянном развитии, благодаря расширению рынка ПО и телекоммуникационных технологий. Необходимость использования систем защиты (СЗ) ПО обусловлена рядом проблем, среди которых следует выделить: незаконное использование алгоритмов, являющихся интеллектуальной собственностью автора, при написании аналогов продукта (промышленный шпионаж); несанкционированное использование ПО (кража и копирование); несанкционированная модификация ПО с целью внедрения программных злоупотреблений; незаконное распространение и сбыт ПО (пиратство).

Системы защиты ПО по методу установки можно подразделить на системы, устанавливаемые на скомпилированные модули ПО; системы, встраиваемые в исходный код ПО до компиляции; и комбинированные.

Системы первого типа наиболее удобны для производителя ПО, так как легко можно защитить уже полностью готовое и оттестированное ПО (обычно процесс установки защиты максимально автоматизирован и сводится к указанию имени защищаемого файла и нажатию "Enter"), а потому и наиболее популярны. В то же время стойкость этих систем достаточно низка (в зависимости от принципа действия СЗ), так как для обхода защиты достаточно определить точку завершения работы "конверта" защиты и передачи управления защищенной программе, а затем принудительно ее сохранить в незащищенном виде.

Системы второго типа неудобны для производителя П.О, так как возникает необходимость обучать персонал работе с программным интерфейсом (API) системы защиты с вытекающими отсюда денежными и временными затратами. Кроме того, усложняется процесс тестирования П.О и снижается его надежность, так как кроме самого П.О ошибки может содержать API системы защиты или процедуры, его использующие. Но такие системы являются более стойкими к атакам, потому что здесь исчезает четкая граница между системой защиты и как таковым П.О.

Для защиты ПО используется ряд методов, таких как:

§ Алгоритмы запутывания - используются хаотические переходы в разные части кода, внедрение ложных процедур - "пустышек", холостые циклы, искажение количества реальных параметров процедур ПО, разброс участков кода по разным областям ОЗУ и т.п.

§ Алгоритмы мутации - создаются таблицы соответствия операндов - синонимов и замена их друг на друга при каждом запуске программы по определенной схеме или случайным образом, случайные изменения структуры программы.

§ Алгоритмы компрессии данных - программа упаковывается, а затем распаковывается по мере выполнения.

§ Алгоритмы шифрования данных - программа шифруется, а затем расшифровывается по мере выполнения.

§ Вычисление сложных математических выражений в процессе отработки механизма защиты - элементы логики защиты зависят от результата вычисления значения какой-либо формулы или группы формул.

§ Методы затруднения дизассемблирования - используются различные приемы, направленные на предотвращение дизассемблирования в пакетном режиме.

§ Методы затруднения отладки - используются различные приемы, направленные на усложнение отладки программы.

§ Эмуляция процессоров и операционных систем - создается виртуальный процессор и/или операционная система (не обязательно реально существующие) и программа-переводчик из системы команд IBM в систему команд созданного процессора или ОС, после такого перевода ПО может выполняться только при помощи эмулятора, что резко затрудняет исследование алгоритма ПО.

§ Нестандартные методы работы с аппаратным обеспечением - модули системы защиты обращаются к аппаратуре ЭВМ, минуя процедуры операционной системы, и используют малоизвестные или недокументированные её возможности.

Заключение

Можно сказать, что не существует одного абсолютно надежного метода защиты. Наиболее полную безопасность можно обеспечить только при комплексном подходе к этому вопросу. Необходимо постоянно следить за новыми решениями в этой области.

Подводя итоги, следует упомянуть о том, что известно множество случаев, когда фирмы (не только зарубежные) ведут между собой настоящие «шпионские войны», вербуя сотрудников конкурента с целью получения через них доступа к информации, составляющую коммерческую тайну. Регулирование вопросов, связанных с коммерческой тайной, еще не получило в России достаточного развития. Имеющееся законодательство все же не обеспечивает соответствующего современным реалиям регулирования отдельных вопросов, в том числе и о коммерческой тайне. В то же время надо отдавать себе отчет, что ущерб, причиненный разглашением коммерческой тайны, зачастую имеет весьма значительные размеры (если их вообще можно оценить). Наличие норм об ответственности, в том числе уголовной, может послужить работникам предостережением от нарушений в данной области, поэтому целесообразно подробно проинформировать всех сотрудников о последствиях нарушений. Хотелось бы надеяться что создающаяся в стране система защиты информации и формирование комплекса мер по ее реализации не приведет к необратимым последствиям на пути зарождающегося в России информационно - интеллектуального объединения со всем миром.

Основные выводы о способах использования рассмотренных выше средств, методов и мероприятий защиты, сводится к следующему:

Наибольший эффект достигается тогда, когда все используемые средства, методы и мероприятия объединяются в единый, целостный механизм защиты информации.

Механизм защиты должен проектироваться параллельно с созданием систем обработки данных, начиная с момента выработки общего замысла построения системы.

Функционирование механизма защиты должно планироваться и обеспечиваться наряду с планированием и обеспечением основных процессов автоматизированной обработки информации.

Необходимо осуществлять постоянный контроль функционирования механизма защиты.

Статистика показывает, что во всех странах убытки от злонамеренных действий непрерывно возрастают. Причем основные причины убытков связаны не столько с недостаточностью средств безопасности как таковых, сколько с отсутствием взаимосвязи между ними, т.е. с нереализованностью системного подхода. Поэтому необходимо опережающими темпами совершенствовать комплексные средства защиты.

Список литературы

1. Федеральный закон «Об информации, информатизации и защите информации» от 20 февраля 1995 года N 24-ФЗ;

2. Закон «О правовой охране топологий интегральных микросхем» от 23.09.92 г. N 3526-I

3. Закон «Об участии в международном информационном обмене» от 5.06.1996 г. N 85-ФЗ

4. Закон Российской Федерации «О правовой охране программ для электронных вычислительных машин и баз данных» от 23 сентября 1992 года №3523-1;

6. Закон «О средствах массовой информации» от 27.12.91 г. N 2124-I

7. Закон «О Федеральных органах правительственной связи и информации» от 19.02.92 N 4524-1

10. Закон «О Государственной автоматизированной системе Российской Федерации «Выборы» от 10 января 2003 г. N 20-ФЗ

11. Крылов В.В. Информационные компьютерные преступления. М.: ИнфраМ-Норма, 1997.

12. Ведеев Д.В. Защита данных в компьютерных сетях. - М., 1995;

13. Копылов В.А. Информационное право. - М.: Юристъ, 1997;

14. Гайкович В.Ю «Основы безопасности информационных технологий», Москва, «Инфо-М», 1998

15. «Как остановить компьютерное пиратство?» (Симкин Л., «Российская юстиция», 1996, N 10)

16. «Информация как элемент криминальной деятельности» (Крылов В.В., «Вестник Московского университета», Серия 11, Право, 1998, N 4)

17. Фоменков Г.В. «О безопасности в Internet» , «Защита информации. Конфидент», № 6, 1998.

18. «Правовая охрана программ для ЭВМ и баз данных» (Виталиев Г.В. http://www.relcom.ru).

19. «Правовая охрана топологий интегральных микросхем» (Сергеев А.П. Правоведение 1993 г. №3).

Подобные документы

    Виды умышленных угроз безопасности информации. Методы и средства защиты информации. Методы и средства обеспечения безопасности информации. Криптографические методы защиты информации. Комплексные средства защиты.

    реферат , добавлен 17.01.2004

    Понятие защиты умышленных угроз целостности информации в компьютерных сетях. Характеристика угроз безопасности информации: компрометация, нарушение обслуживания. Характеристика ООО НПО "Мехинструмент", основные способы и методы защиты информации.

    дипломная работа , добавлен 16.06.2012

    Развитие новых информационных технологий и всеобщая компьютеризация. Информационная безопасность. Классификация умышленных угроз безопасности информации. Методы и средства защиты информации. Криптографические методы защиты информации.

    курсовая работа , добавлен 17.03.2004

    Основные свойства информации. Операции с данными. Данные – диалектическая составная часть информации. Виды умышленных угроз безопасности информации. Классификация вредоносных программ. Основные методы и средства защиты информации в компьютерных сетях.

    курсовая работа , добавлен 17.02.2010

    Виды внутренних и внешних умышленных угроз безопасности информации. Общее понятие защиты и безопасности информации. Основные цели и задачи информационной защиты. Понятие экономической целесообразности обеспечения сохранности информации предприятия.

    контрольная работа , добавлен 26.05.2010

    Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа , добавлен 08.03.2013

    История возникновения и развития шифрования от древних времен и до наших дней. Анализ современных проблем обеспечения секретности и целостности передаваемых или хранимых данных, наиболее часто используемые криптографические методы защиты информации.

    контрольная работа , добавлен 23.04.2013

    Классификация информации по значимости. Категории конфиденциальности и целостности защищаемой информации. Понятие информационной безопасности, источники информационных угроз. Направления защиты информации. Программные криптографические методы защиты.

    курсовая работа , добавлен 21.04.2015

    Организация системы защиты информации во всех ее сферах. Разработка, производство, реализация, эксплуатация средств защиты, подготовка соответствующих кадров. Криптографические средства защиты. Основные принципы инженерно-технической защиты информации.

    курсовая работа , добавлен 15.02.2011

    Разновидности защиты компьютерной информации. Особенности алгоритмов и шрифтов, применяемых в криптографии. Специфика использования криптосистем с открытым ключом. Структура вредоносного программного обеспечения. Обеспечение безопасности баз данных.