Как перевести в двоичную систему счисления. Сложение двоичных чисел. Перевод целых чисел из двоичной системы счисления в десятичную

Самые распространенные в современном мире методы расчетов - десятичный и двоичный. Они используются в совершенно разных областях, но оба одинаково важны. Нередко требуется и перевод из двоичной в десятичную систему или наоборот. Названия произошли от оснований, которые зависят от того, сколько знаков используется в записи чисел. В двоичной это только 0 и 1, а в десятичной - от 0 до 9. В других системах помимо цифр используются буквы, другие значки и даже иероглифы, но практически все они уже давно устарели. Поскольку даже другие разновидности числовых систем гораздо менее распространены, то что речь пойдет прежде всего о двух уже упомянутых. На самом деле удивительно, как все это можно было придумать. Поговорим на эту тему отдельно.

История возникновения

Даже сейчас, когда, казалось бы, весь мир считает одинаково, встречаются самые разные системы. В самых отдаленных уголках земного шара довольствуются лишь понятиями "один", "два" и "много", или чем-то подобным. Что уж говорить о тех временах, когда людям было гораздо сложнее контактировать друг с другом, так что использовалось огромное количество самых разных видов записей и методов подсчетов. Человечество далеко не сразу пришло к существующей системе, и это отражается в том, что час разделен на 60 минут, а не на 100 отрезков времени, что было бы, кажется, логичней. И в то же время люди чаще считают десятками, чем дюжинами. Все это отголоски того времени, когда инструментами для количественной оценки чего-либо служили собственные пальцы или, например, фаланги некоторых из них. Так возникли десятичная и двенадцатиричная системы. Но как же возникла двоичная? Очень просто и логично. Дело в том, что, например, у диодов есть всего два положения: он может быть либо включен, либо выключен. Первое состояние, таким образом, можно записать как 1, а второе - как 0. Однако это не означает, что двоичная система возникла одновременно с электронными приборами. Ее использовали гораздо раньше, например, Лейбниц считал ее крайне удобной, изящной и простой. Даже удивительно, что эта система счисления не стала в итоге основной.

Сферы применения

Для большинства людей две основные системы счисления просто не пересекаются. Так что осуществлять перевод из двоичной в десятичную - задача, посильная не для всех. Дело в том, что последняя система используется в обиходе, общении между людьми, при простых подсчетах и т. д. А вот на языке двоичной говорят все цифровые приборы, в первую очередь компьютеры. Любая информация, находящаяся в памяти каждого настольного ПК, планшета, телефона, ноутбука и многих других приборов - это различные сочетания нулей и единиц.

Отличия и особенности

Когда речь идет о системах счисления, обязательно необходимо как-то разграничить их. Ведь отличить 11 или 100 в разных методах записи просто так совершенно невозможно. Именно поэтому используется указатель ниже и правее самого числа. Так что, увидев запись 11 2 или 100 10 , можно понять, о чем идет речь. Обе системы являются позиционными, то есть от места той или иной цифры зависит ее значение. О разрядах десятичной системы рассказывают в школе: там есть единицы, десятки, сотни, тысячи и т. д. В двоичной все то же самое. Но в связи с тем, что ее основание - 2 - меньше 10, то разрядов ей нужно гораздо больше, то есть запись чисел получается гораздо длиннее. Кстати, в двоичной, как и во всех других системах, кроме десятичной, как самой распространенной, чтение происходит особым образом. Если основание 10 дает возможность прочесть 101 как "сто один", то для 2 это будет "один ноль один".

Возвращаясь к вопросу разрядов, необходимо повторить, что в связи с гораздо меньшим основанием требуется больше разрядов. Так, например, 8 10 - это 1000 2 . Разница очевидна - один разряд и четыре. Еще одно серьезное отличие - в двоичной системе не существует отрицательных чисел. Разумеется, записать его можно, но храниться и зашифровываться оно все равно будет иначе. Итак, как же производится перевод из двоичной системы счисления в десятичную и наоборот?

Алгоритм

Достаточно редко, но все-таки иногда приходится осуществлять переход от одного основания к другому. Иными словами, возникает потребность в том, чтобы произвести перевод из двоичной системы в десятичную и наоборот. Современные компьютеры делают это легко и быстро, даже если записи очень длинные и объемные. Люди тоже могут это делать, хоть и гораздо медленнее и менее эффективно. Провести и одну, и вторую операцию не так уж и сложно, но требуются знания, как это делать, внимательность и практика. Для того чтобы перейти от основания 2 к 10, необходимо проделать следующие шаги:

2) последовательно умножить значение на 2, возведенное в степень, равную номеру позиции;

3) сложить полученные результаты.

Еще один способ - начать суммировать произведения цифр последовательно справа налево. Это называется преобразованием методом Горнера и многим кажется более удобным, чем обычный алгоритм.

Для того чтобы провести обратную операцию, то есть перейти от десятичной системы к двоичной, нужно сделать вот что:

1) разделить изначальное число на 2 и записать остаток (1 или 0);

2) повторять шаг 1 до момента, когда останется только 0 или 1;

3) записать полученные значения по порядку.

Существуют и другие способы провести перевод из двоичной в десятичную систему счисления и наоборот. Но они не имеют никакого преимущества перед описанным алгоритмом, не являются более эффективными. Зато они требуют навыков осуществления арифметических действий в двоичной системе, что доступно очень немногим.

Дроби

К счастью или сожалению, но факт остается фактом - в двоичной системе используются не только целые числа. Перевод дробей - не слишком сложная, но зачастую трудоемкая для человека задача. Если изначальное число представлено в десятичной системе, то после преобразования целого числа все, что после запятой, нужно уже не делить, а умножать на 2, записывая целые части. Если же производится перевод из двоичной в десятичную систему, то все еще проще. В этом случае, когда начнется преобразование части после запятой, степень, в которую возводится 2, будет последовательно равняться -1, -2, -3 и т. д. Лучше всего будет рассмотреть это на практике.

Пример

Для того чтобы понять, как применять описанные алгоритмы, необходимо проделать все операции самостоятельно. Практикой всегда можно закрепить теорию, так что лучше всего будет рассмотреть следующие примеры:

  • перевод 1000101 2 в десятичную систему: 1х2 6 + 0х2 5 + 0х2 4 + 0х2 3 + 1х2 2 + 0х2 1 + 1х2 0 = 64+0+0+0+4+1 = 69 10 ;
  • с помощью метода Горнера. 00110111010 2 = 0х2+0=0х2+0=0х2+1=1х2+1=3х2+0=6х2+1=13х2+1=27х2+1=55х2+0=110х2+1=221х2+0=442 10 ;
  • 1110,01 2: 1х2 3 + 1х2 2 + 1х2 1 + 0х2 0 + 0х2 -1 + 1х2 -2 = 8+4+2+0,25 = 14,25 10 ;
  • из десятичной системы: 15 10 = 15/2=7(1)/2=3(1)/2=1(1)/2=0(1)= 1111 2 ;

Как не запутаться?

Даже на примере лишь двоичной и десятичной систем становится ясно, что смена основания вручную - нетривиальная задача. А ведь есть еще и другие: шестнадцатиричная, восьмеричная, шестидесятиричная и т. д. При ручном переводе из одной системы счисления в другую крайне необходима внимательность. Не запутаться действительно сложно, особенно если запись длинная. Кроме того, нельзя забывать, что разряды считаются с 0, а не 1, то есть количество цифр всегда будет на одну больше. Разумеется, нужно внимательно подсчитывать число разрядов и не допускать ошибок в арифметических действиях и, конечно, не пропускать шаги в алгоритме. В конечном итоге, существуют способы осуществлять переход между основаниями программными методами. Но здесь проще самостоятельно написать скрипт, чем искать его на просторах всемирной сети. В любом случае, навыки ручного перевода, как и теоретическое представление о том, как это делается, тоже должны быть.

В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.

Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

Еще пример:

260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

VO = 1 1 0 0 1 0 1 0 0 1 0;

VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде

позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел

позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали

называть арабской.

Позиционная система — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры, стандартная 10-я система счисления - это позиционная система. Допустим дано число 453.

Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50,

а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Двоичная система счисления.

Здесь только 2 цифры - это 0 и 1. Основание двоичной системы - число 2.

Цифра, которая находится с самого края справа, указывает количество единиц, вторая цифра -

Во всех разрядах возможна лишь одна цифра — или нуль, или единица.

С помощью двоичной системы счисления возможно закодировать всякое натуральное число, представив

это число в виде последовательности нулей и единиц.

Пример: 10112 = 1*2 3 + 0*2*2+1*2 1 +1*2 0 =1*8 + 1*2+1=1110

Двоичную систему счисления, как и десятичную систему счисления , зачастую используют в вычислительной

технике. Текст и числа компьютер хранит в своей памяти в двоичном коде и программным способом преобразует

в изображение на экране.

Сложение, вычитание и умножение двоичных чисел.

Таблица сложения в двоичной системе счисления:

10 (перенос в

старший разряд)

Таблица вычитания в двоичной системе счисления:

(заём из старшего

разряда) 1

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

+ 1 1 1 0
1 0 1
1 0 0 1 1

Таблица умножения в двоичной системе счисления:

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

* 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
= 1 0 0 0 1 1 0

Преобразование чисел в двоичной системе счисления.

Для преобразования из двоичной системы в десятичную пользуются следующей таблицей степеней

основания 2:

Начиная с цифры один каждая цифра умножается на 2. Точка, стоящая после 1, называют двоичной точкой .

Преобразование двоичных чисел в десятичные.

Пусть, есть двоичное число 110001 2 . Для перевода в десятичное записываем его в виде суммы по

разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

Немного по другому:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Также хорошо записывать расчет как таблицу:

Двигаемся справа налево. Под всеми двоичными единицами записываем её эквивалент строчкой ниже.

Преобразование дробных двоичных чисел в десятичные.

Задание: перевести число 1011010, 101 2 в десятичную систему.

Записываем заданное число в таком виде:

1*2 6 +0*2 5 +1*2 4 +1*2 3 +0 *2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

Другой вариант записи:

1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625

Либо в виде таблицы:

0.25

0.125

0.125

Преобразование десятичных чисел в двоичные.

Пусть, необходимо перевести число 19 в двоичное. Можем сдеать это таким образом:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

То есть, каждое частное делится на 2 и записывается остаток в конец двоичной записи. Деление

продолжается до того момента, когда в частном не будет нуля. Итог пишем справа налево. Т.е. нижняя

цифра (1) будет крайней левой и так далее. Итак, у нас получилось число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные.

Когда в заданном числе присутствует целая часть, то ее преобразуют отдельно от дробной. Перевод

дробного числа из десятичной системы счисления в двоичную происходит следующим образом:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего

разряда числа в двоичной системе счисления;

  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если

достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над

дробной частью произведения.

Пример : Нужно перевести дробное десятичное число 206,116 в дробное двоичное число.

Переведя целую часть, получаем 206 10 =11001110 2 . Дробная часть 0,116 умножается на основание 2,

заносим целые части произведения в разряды после запятой:

0,116 . 2 = 0,232

0,232 . 2 = 0,464

0,464 . 2 = 0,928

0,928 . 2 = 1,856

0,856 . 2 = 1,712

0,712 . 2 = 1,424

0,424 . 2 = 0,848

0,848 . 2 = 1,696

0,696 . 2 = 1,392

0,392 . 2 = 0,784

Результат: 206,116 10 ≈ 11001110,0001110110 2

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;
  • записываем все остатки от деления в обратном порядке;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на

соответствующую степень разряда;