Какая разница сколько ядер в процессоре. Multi-Core vs. Many-Core, или Зачем нужны многоядерные микропроцессоры

Добрый день, уважаемые читатели нашего техноблога. Сегодня у нас не обзор, а некое подобие сравнения какой процессор лучше 2 ядерный или 4 ядерный? Интересно, кто круче себя показывает в 2018 году? Тогда приступим. Сразу скажем, что пальма первенства в большинстве случаев будет за устройством с большим числом физических модулей, но и чипы с 2 ядрами не так просты, как кажутся на первый взгляд.

Многие, наверное уже догадались, что рассматривать мы будем всех текущих представителей от Intel семейства Pentium Coffee Lake и народный «гиперпень» G4560 (Kaby Lake). Насколько модели актуальны в текущем году и стоит ли задуматься о покупке более производительных AMD Ryzen или тех же Core i3 с 4-мя ядрами.

Семейство AMD Godavari и Bristol Ridge намеренно не рассматривается по одной простой причине — оно не имеет никакого дальнейшего потенциала, да и сама платформа оказалась не самой удачной, как могло предполагаться.

Зачастую эти решения покупаются либо по незнанию, либо «на сдачу» в качестве какой-нибудь максимально дешевой сборки для интернета и онлайн-фильмов. Но нас такое положение вещей особо не устраивает.

Отличия 2-ядерных чипов от 4-ядерных

Рассмотрим основные моменты, которые отличают первую категорию чипов от второй. На аппаратном уровне можно заметить, что отличается только количество вычислительных блоков. В остальных случаях, ядра объединены высокоскоростной шиной обмена данными, общим контроллером памяти для плодотворной и оперативной работы с ОЗУ.

Зачастую кэш L1 каждого ядра — величина индивидуальная, а вот L2 может быть либо един для всех, либо также индивидуален для каждого блока. Однако в таком случае дополнительно используется уже кэш-память L3.

В теории 4-ядерные решения должны быть быстрее и мощнее в 2 раза, поскольку выполняют на 100% больше операций за такт (возьмем за основу идентичную частоту, кэш, техпроцесс и все прочие параметры). Но на практике ситуация меняется совершенно нелинейно.

Но здесь стоит отдать должное: в многопотоке вся сущность 4 ядер раскрывается в полной мере.

Почему 2-ядерные процессоры все еще популярны?

Если взглянуть на мобильный сегмент электроники, то можно заметить засилье 6−8 ядерных чипов, которые выглядят максимально органично и нагружаются параллельно при выполнении всех задач. Почему так? ОС Android и iOS — довольно молодые системы с высоким уровнем конкуренции, а потому оптимизация каждого приложения — залог успеха продаж девайсов.

С индустрией ПК ситуация иная и вот почему:

Совместимость. При разработке любого ПО разработчики стремятся угодить как новой, так и старой аудитории со слабым железом. На 2-ядерных процессорах делается больший акцент в ущерб поддержки 8-ядерных.

Распараллеливание задач. Несмотря на засилье технологий в 2018 году, заставить программу работать с несколькими ядрами и потоками ЦП параллельно все еще не просто. Если речь заходит за просчет нескольких совершенно разных приложений, то вопросов нет, но когда дело касается вычислений внутри одной программы — тут уже хуже: приходится регулярно просчитывать абсолютно разную информацию, при этом не забывая об успехе задач и отсутствии ошибок при вычислениях.

В играх ситуация еще более интересная, поскольку объемы информации разделить на равные «доли» практически нереально. В итоге получаем следующую картину: один вычислительный блок маслает на 100%, остальные 3 — ждут своей очереди.

Преемственность. Каждое новое решение основывается на предыдущих наработках. Писать код с нуля не только дорого, но и зачастую невыгодно центру разработки, поскольку «людям и этого хватит, а пользователей 2-ядерных чипов все еще львиная доля».

Взять к примеру многие культовые проекты вроде Lineage 2, AION, World of Tanks. Все они создавались на базе древних движков, которые способны адекватно нагрузить лишь одно физическое ядро, а потому здесь основную роль при вычислениях играет только частота чипа.
Финансирование. Далеко не все могут позволить себе создать совершенно новый продукт, рассчитанный не 4,8, 16 потоков. Это слишком дорого, да и в большинстве случаев неоправданно. Взять к примеру ту же культовую GTA V, которая без проблем «съест» и 12 и 16 потоков, не говоря уже о ядрах.

Стоимость ее разработки перевалила за добрые 200 млн долларов, что само по себе уже очень дорого. Да, игра оказалась успешной, поскольку кредит доверия Rockstar в среде игроков был огромен. А если бы это был молодой стартап? Тут уже сами все понимаете.

Нужны ли многоядерные процессоры?

Давайте рассмотрим ситуацию с точки зрения простого обывателя. Большинству пользователей хватает 2 ядер по следующим причинам:

  • невысокие потребности;
  • большинство приложений работает стабильно;
  • игры — не главный приоритет;
  • низкая стоимость сборок;
  • процессоры сами по себе дешевые;
  • большинство покупает готовые решения;
  • некоторые пользователи понятия не имеют, что им продают в магазинах и чувствуют себя прекрасно.

Можно ли играть на 2 ядрах? Да без проблем, что с успехом несколько лет доказывала линейка Intel Core i3 вплоть до 7-го поколения. Также огромной популярностью пользовались Pentium Kaby Lake, в которые впервые в истории внедрили поддержку Hyper Threading.
Стоит ли сейчас покупать 2 ядра, пусть и с 4-мя потоками? Исключительно для офисных задач. Эпоха данных чипов постепенно уходит, да и производители начали массово переключаться на 4 полноценных физических ядра, а потому не стоит рассматривать те же Pentium и Core i3 Kaby Lake в долгосрочной перспективе. AMD так и вовсе отказалась от 2-ядерников.

QX | 22 июля 2015, 14:45
Не только частота, техпроцесс тоже. Современные 2-ядерные процессоры по 3 ГГц не сравнить с первыми 2-ядерниками, из тех что тоже по 3 ГГц. Частота одинаковая, но старые просто жуткие тормоза в сравнении с новыми. В итоге современный 2-ядерный i3 намного лучше, чем 4-ядерник Quad Q6600. Даже Pentium G посвежее лучше старого Quadа.

QX | 11 июля 2015, 12:18
Здесь разница в частоте не велика, 3,5 против 3 ГГц. Потому интересны 4 ядра. Но конечно если остальные характеристики тоже не отстают. Много ядер нужно для архивации, кодирования видео и т.п. Взяв 2 ядерник ещё и сэкономить можно, слегка. Ещё вопрос, как много будете работать на нём. Ну и лучше бы Вы всё-таки обе модели конкретно назвали. А так, я бы Вам посоветовал Core i3 помощнее и посвежее.

MaKos007 | 30 марта 2015, 16:00
Я тут буду растекаться мысью по древу. потому сразу скажу - ваш выбор двухъядерный процессор с более высокой частотой. Если теория не интересна, то дальше можно не читать.

Частота процессора представляет собой, фактически, количество операций, выполняемых им в единицу времени. Таким образом, чем выше частота, тем больше действий выполняется за секунду, например.

Что же у нас с количеством ядер... При наличии более чем одного ядра процессор может обсчитывать более одной задачи. Это как ленты конвейера. Одна лента конвейера работает быстро, но две параллельные ленты, на которых идут операции, выдают в два раза больше результата. Так что в теории двухъядерные решения будут работать вдвое быстрее одноядерного.

Это теория, но как и с конвейерами, эти два потока надо чем-то нагрузить. при этом нагрузить правильно, чтобы каждая лента работала с полной отдачей. В случае с процессорами это зависит от архитектуры программ и игр, которые используют эту самую многоядерность. Если приложение умеет разделять задачи на несколько потоков (читай - использовать многоядерность процессора), то многоядерность может дать значимый прирост в скорости исполнения команд. А ежели не умеет или задачи такие, что разделить невозможно, тогда совершенно неважно много ядер в CPU или нет.

На самом деле, вопрос оптимального количества ядер - сложный. Здесь еще важна архитектура самих ядер и связей между ними. Так первые многоядерные процессоры имели значительно менее функциональное устройство, чем современные. Кроме того, следует учитывать, что современные ОС Windows 7 и Windows 8 (я не рассматриваю здесь *nix системы и их поддержку многоядерных процессоров - отдельная и очень интересная тема) найчились очень хорошо распараллеливать многие задачи. Таким образом, многоядерность помогает не тормозить основные процессы (используемые пользователем приложения и игры) из-за выполнения фоновых задач. Таким образом, антивирусная защита и фаервол не станут тормозить (точнее, в меньшей степени будут тормозить) запущенную игру или работу в Фотошопе.

Для каких программ важна многоядерность. Проведя некоторое время в интернете, можно выяснить, что она ускоряет конвертацию видео и аудио; рендеринг 3D-моделей, шифрование сигнала и т.п. Вам для работы в Photoshop и видеомонтажа не нужно 4 ядра. Вполне достаточно, как я уже говорил, двух, но с более высоким быстродействием каждого из них.

teleport | 21 апреля 2013, 01:30
Простой подсчет производительности показывает: для 2-х ядерного общая производительность 2 x 3.5 = 7, для 4-х ядерного - 4 x 3 = 12. Так что 4-х ядерный почти в 2 раза мощнее. Кроме того он наверняка современнее, а значит экономичнее и производительнее. А если используется только одно ядро - меньше греется, поскольку частота одного ядра немного ниже, но для нагрева это существенно.

Для видеомонтажа процессор скорее всего не критичен там в основном задействуются ресурсы видеокарты или специальной платы видеомонтажа. Но процессор в этом тоже учавствует и если 2-х ядерный отдаст под эту задачу одно ядро, то остальные задачи (разные антивири) будут бороться за оставшееся ядро, что приведет к жуткой тупизне. Короче многоядерность лучше.

yang | 11 апреля 2013, 20:22
В данном случае эффективнее и экономичнее во всех отношениях будет двухъядерный процессор.

Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (

В первые годы нового тысячелетия, когда частоты CPU, наконец, прошли отметку 1 ГГц, некоторые компании (не будем показывать пальцем на Intel) предсказывали, что новая архитектура NetBurst сможет в будущем достичь частот порядка 10 ГГц. Энтузиасты ожидали наступление новой эры, когда тактовые частоты CPU будут расти подобно грибам после дождя. Нужно больше производительности? Просто перейдите на процессор с большей тактовой частотой.

Яблоко Ньютона громко упало на головы мечтателей, которые рассматривали мегагерцы как самый лёгкий способ продолжения роста производительности ПК. Физические ограничения не позволили экспоненциально увеличивать тактовую частоту без соответствующего роста тепловыделения, да и другие проблемы, связанные с технологиями производства, тоже стали возникать. Действительно, последние годы самые быстрые процессоры работают на частотах от 3 до 4 ГГц.

Конечно, прогресс не остановить, когда за него готовы платить деньги - есть довольно много пользователей, кто готов выложить немалую сумму за более мощный компьютер. Поэтому инженеры стали искать другие способы увеличения производительности, в частности, повышая эффективность выполнения команд, а не только надеясь на тактовую частоту. Параллелизм тоже оказался решением - если вы не можете сделать CPU быстрее, то почему не добавить второй такой же процессор, чтобы увеличить вычислительные ресурсы?

Pentium EE 840 - первый двуядерный CPU, появившийся в рознице.

Основная проблема с параллелизмом заключается в том, что программное обеспечение должно быть специально написано так, чтобы распределять нагрузку по нескольким потокам - то есть вы не получите немедленной отдачи от вложенных денег, в отличие от таковой частоты. В 2005 году, когда вышли первые двуядерные процессоры, они не обеспечивали серьёзного прироста производительности, поскольку на настольных ПК использовалось довольно мало программного обеспечения, которое бы их поддерживало. Фактически, большая часть двуядерных CPU была медленнее одноядерных процессоров в большинстве задач, поскольку одноядерные CPU работали на более высоких тактовых частотах.

Впрочем, прошло уже четыре года, и за них многое изменилось. Многие разработчики программного обеспечения оптимизировали свои продукты, чтобы получить преимущество от нескольких ядер. Одноядерные процессоры сегодня уже сложнее найти в продаже, и двух-, трёх- и четырёхъядерные CPU считаются вполне обыденными.

Но возникает вопрос: сколько ядер CPU нужно на самом деле? Достаточно ли для игр трёхъядерного процессора, или лучше доплатить и взять четырёхъядерный чип? Достаточно ли для обычного пользователя двуядерного процессора, или большее число ядер действительно даёт какую-либо разницу? Какие приложения оптимизированы под несколько ядер, а какие будут реагировать на изменение только таких спецификаций, как частота или размер кэша?

Мы посчитали, что настало хорошее время провести тесты приложений из обновлённого пакета (впрочем, обновление ещё не закончено) на одно-, двух-, трёх- и четырёхъядерных конфигурациях, чтобы понять, насколько ценными стали многоядерные процессоры в 2009 году.

Чтобы тесты были справедливыми, мы выбрали четырёхъядерный процессор - разогнанный до 2,7 ГГц Intel Core 2 Quad Q6600. После проведения тестов на нашей системе, мы затем отключили одно из ядер, перезагрузились, и повторили тесты. Мы последовательно отключали ядра и получили результаты для разного количества активных ядер (от одного до четырёх), при этом процессор и его частота не менялись.

Отключение ядер CPU под Windows выполнить очень легко. Если вы хотите узнать, как это сделать, то наберите "msconfig" в окне Windows Vista "Начать поиск/Start Search" и нажмите "Enter". Это откроет утилиту "Конфигурация системы".

В ней перейдите на закладку "Загрузка/Boot" и нажмите клавишу "Дополнительные параметры/Advanced options".

Это приведёт к появлению окна "Дополнительные параметры загрузки/BOOT Advanced Options". Выберите галочку "Число процессоров/Number of Processors" и укажите нужно число ядер процессора, которые будут активны в системе. Всё очень просто.

После подтверждения программа предложит перезагрузиться. После перезагрузки в "Диспетчере задач Windows" (Task Manager) можно увидеть число активных ядер. Вызов "Диспетчера задач" выполняется нажатием клавиш Crtl+Shift+Esc.

Выберите в "Диспетчере задач" вкладку "Быстродействие/Performance". В ней вы сможете увидеть графики нагрузки для каждого процессора/ядра (будь это отдельный процессор/ядро или виртуальный процессор, как мы получаем в случае Core i7 с активной поддержкой Hyper-Threading) в пункте "Хронология загрузки ЦП/CPU Usage History". Два графика означают два активных ядра, три - три активных ядра и т.д.

Теперь, когда вы ознакомились с методикой наших тестов, позвольте перейти к детальному рассмотрению конфигурации тестового компьютера и программ.

Тестовая конфигурация

Системное аппаратное обеспечение
Процессор Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, 8 Мбайт кэша L2
Платформа MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Память A-Data EXTREME DDR2 800+, 2 x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Жёсткий диск Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 3,0 Гбит/с
Сеть Встроенный контроллер nForce 750i Gigabit Ethernet
Видеокарты Gigabyte GV-N250ZL-1GI 1 GB DDR3 PCIe
Блок питания Ultra HE1000X, ATX 2.2, 1000 Вт
Программное обеспечение и драйверы
Операционная система Microsoft Windows Vista Ultimate 64-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Драйвер платформы nForce Driver Version 15.25
Графический драйвер Nvidia Forceware 182.50

Тесты и настройки

3D-игры
Crysis Quality settings set to lowest, Object Detail to High, Physics to Very High, version 1.2.1, 1024x768, Benchmark tool, 3-run average
Left 4 Dead Quality settings set to lowest, 1024x768, version 1.0.1.1, timed demo.
World in Conflict Quality settings set to lowest, 1024x768, Patch 1.009, Built-in benchmark.
iTunes Version: 8.1.0.52, Audio CD ("Terminator II" SE), 53 min., Default format AAC
Lame MP3 Version: 3.98 (64-bit), Audio CD ""Terminator II" SE, 53 min, wave to MP3, 160 Kb/s
TMPEG 4.6 Version: 4.6.3.268, Import File: "Terminator II" SE DVD (5 Minutes), Resolution: 720x576 (PAL) 16:9
DivX 6.8.5 Encoding mode: Insane Quality, Enhanced Multi-Threading, Enabled using SSE4, Quarter-pixel search
XviD 1.2.1 Display encoding status=off
MainConcept Reference 1.6.1 MPEG2 to MPEG2 (H.264), MainConcept H.264/AVC Codec, 28 sec HDTV 1920x1080 (MPEG2), Audio: MPEG2 (44.1 KHz, 2 Channel, 16-Bit, 224 Kb/s), Mode: PAL (25 FPS), Profile: Tom"s Hardware Settings for Qct-Core
Autodesk 3D Studio Max 2009 (64-bit) Version: 2009, Rendering Dragon Image at 1920x1080 (HDTV)
Adobe Photoshop CS3 Version: 10.0x20070321, Filtering from a 69 MB TIF-Photo, Benchmark: Tomshardware-Benchmark V1.0.0.4, Filters: Crosshatch, Glass, Sumi-e, Accented Edges, Angled Strokes, Sprayed Strokes
Grisoft AVG Antivirus 8 Version: 8.0.134, Virus base: 270.4.5/1533, Benchmark: Scan 334 MB Folder of ZIP/RAR compressed files
WinRAR 3.80 Version 3.80, Benchmark: THG-Workload (334 MB)
WinZip 12 Version 12, Compression=Best, Benchmark: THG-Workload (334 MB)
3DMark Vantage Version: 1.02, GPU and CPU scores
PCMark Vantage Version: 1.00, System, Memory, Hard Disk Drive benchmarks, Windows Media Player 10.00.00.3646
SiSoftware Sandra 2009 SP3 CPU Test=CPU Arithmetic/MultiMedia, Memory Test=Bandwidth Benchmark

Результаты тестов

Начнём с результатов синтетических тестов, чтобы потом оценить, насколько хорошо они соответствуют реальным тестам. Важно помнить, что синтетические тесты пишутся в расчёте на будущее, поэтому они должны сильнее реагировать на изменение в количестве ядер, чем реальные приложения.

Мы начнём с синтетического теста игровой производительности 3DMark Vantage. Мы выбрали прогон "Entry", который 3DMark выполняет на самом низком доступном разрешении, чтобы производительность CPU сильнее влияла на результат.

Почти линейный рост довольно интересен. Самый большой прирост наблюдается при переходе от одного ядра к двум, но и затем масштабируемость прослеживается довольно ощутимо. А теперь давайте перейдём к тесту PCMark Vantage, который призван отображать общую системную производительность.

Результаты PCMark заставляют предположить, что конечный пользователь выиграет от увеличения количества ядер CPU вплоть до трёх, а четвёртое ядро, наоборот, немного снизит производительность. Давайте посмотрим, с чем связан подобный результат.

В тесте подсистемы памяти мы вновь наблюдаем самый большой прирост производительности при переходе от одного ядра CPU к двум.

Тест продуктивности, как нам кажется, сильнее всего влияет на общий результат теста PCMark, поскольку в данном случае рост производительности заканчивается на трёх ядрах. Давайте посмотрим, будут ли аналогичны результаты другого синтетического теста SiSoft Sandra.

Мы начнём с арифметических и мультимедийных тестов SiSoft Sandra.


Синтетические тесты демонстрируют довольно линейный прирост производительности при переходе от одного ядра CPU к четырём. Данный тест написан специально, чтобы эффективно использовать четыре ядра, но мы сомневаемся, что в реальных приложениях будет такой же линейный прогресс.

Тест памяти Sandra тоже предполагает, что три ядра дадут больше пропускной способности памяти в целочисленных буферизованных операциях iSSE2.

После синтетических тестов настало время посмотреть, что мы получим в тестах приложений.

Кодирование аудио традиционно являлось сегментом, приложения в котором не очень сильно выигрывали от нескольких ядер, либо они не были оптимизированы разработчиками. Ниже приведены результаты Lame и iTunes.

Lame не демонстрирует особого преимущества при использовании нескольких ядер. Что интересно, мы наблюдаем небольшой прирост производительности с чётным количеством ядер, что довольно странно. Однако разница невелика, поэтому она просто может находиться в пределах погрешности.

Что касается iTunes, то мы видим небольшой прирост производительности после активации двух ядер, но большее число ядер ничего не дают.

Получается, ни Lame, ни iTunes не оптимизированы под несколько ядер CPU для кодирования аудио. С другой стороны, насколько мы знаем, программы кодирования видео часто очень сильно оптимизируют под несколько ядер из-за их изначально параллельной природы. Давайте посмотрим на результаты кодирования видео.

Мы начнём тесты кодирования видео с MainConcept Reference.

Обратите внимание, насколько сильно на результат влияет увеличение числа ядер: время кодирования уменьшается с девяти минут на одноядерном 2,7-ГГц процессоре Core 2 до всего двух минут и 30 секунд, когда активны все четыре ядра. Вполне понятно, что если вы часто перекодируете видео, то лучше брать процессор с четырьмя ядрами.

Получим ли мы схожие преимущества в тестах TMPGEnc?

Здесь можно видеть влияние на результат кодера. Если кодер DivX высоко оптимизирован под несколько ядер CPU, то Xvid не демонстрирует такого заметного преимущества. Впрочем, даже Xvid даёт снижение времени кодирования на 25% при переходе от одного ядра к двум.

Начнём графические тесты с Adobe Photoshop.

Как видим, версия CS3 не замечает добавление ядер. Странный результат для столь популярной программы, хотя мы признаём, что не использовали последнюю версию Photoshop CS4. Результаты CS3 всё равно не вдохновляют.

Давайте посмотрим на результаты 3D-рендеринга в Autodesk 3ds Max.

Вполне очевидно, что Autodesk 3ds Max "любит" дополнительные ядра. Данная особенность присутствовала в 3ds Max ещё во время работы этой программы в DOS-окружении, поскольку задача 3D-рендеринга выполнялась столь долго, что было необходимо распределять её по нескольким компьютерам в сети. Опять же, для подобных программ весьма желательно использовать четырёхъядерные процессоры.

Тест антивирусного сканирования очень близок к реальным жизненным условиям, поскольку почти все используют антивирусы.

Антивирус AVG демонстрирует чудесный прирост производительности при увеличении ядер CPU. Во время антивирусного сканирования производительность компьютера может очень сильно падать, и результаты наглядно показывают, что несколько ядер существенно сокращают время сканирования.


WinZip и WinRAR не дают заметного прироста на нескольких ядрах. WinRAR демонстрирует прирост производительности на двух ядрах, но не более того. Интересно будет посмотреть, как себя покажет только что вышедшая версия 3.90.

В 2005 году, когда стали появляться настольные компьютеры с двумя ядрами, просто не существовало игр, которые демонстрировали бы прирост производительности при переходе от одноядерных CPU на многоядерные процессоры. Но времена изменились. Как сказываются несколько ядер CPU на современных играх? Давайте запустим несколько популярных игр и посмотрим. Мы проводили игровые тесты в низком разрешении 1024x768 и с низким уровнем графических деталей, чтобы минимизировать влияние видеокарты и определить, насколько сильно данные игры упираются в производительность CPU.

Начнём с Crysis. Мы снизили до минимума все опции за исключением детализации объектов, которую мы выставили в "High", а также Physics, которую мы установили в "Very High". В итоге производительность игры должна сильнее зависеть от CPU.

Игра Crysis показала впечатляющую зависимость от количества ядер CPU, что весьма удивляет, поскольку мы считали, что она больше реагирует на производительность видеокарты. В любом случае, можно видеть, что в Crysis одноядерные CPU дают частоту кадров в два раза меньше, чем с четырьмя ядрами (впрочем, помните, что если игра будет больше зависеть от производительности видеокарты, то разброс результатов при разном числе ядер CPU будет меньше). Интересно также отметить, что игра Crysis может использовать только три ядра, поскольку добавление четвёртого не даёт заметной разницы.

Но мы знаем, что Crysis серьёзно использует расчёты физики, поэтому давайте посмотрим, каковая будет ситуация в игре не с такой продвинутой физикой. Например, в Left 4 Dead.

Что интересно, игра Left 4 Dead демонстрирует схожий результат, хотя львиная доля прироста производительности появляется после добавления второго ядра. Есть небольшой прирост при переходе на три ядра, но вот четвёртое ядро этой игре не требуется. Интересная тенденция. Посмотрим, насколько она будет характерна для стратегии реального времени World in Conflict.

Результаты вновь схожие, но мы видим удивительную особенность - три ядра CPU дают чуть лучшую производительность, чем четыре. Разница близка к пределу погрешности, но это вновь подтверждает, что четвёртое ядро в играх не используется.

Настало время делать выводы. Поскольку данных мы получили немало, давайте упростим ситуацию, рассчитав средний прирост производительности.

Сначала хотелось бы сказать о том, что результаты синтетических тестов слишком оптимистичны, если сравнивать использование нескольких ядер с реальными приложениями. Прирост производительности синтетических тестов при переходе от одного ядра к нескольким выглядит почти линейным, каждое новое ядро добавляет 50% производительности.

В приложениях мы наблюдаем более реалистичный прогресс - около 35% прироста от второго ядра CPU, 15% прирост от третьего и 32% прирост от четвёртого. Странно, что при добавлении третьего ядра мы получаем только половину преимущества, которое даёт четвёртое ядро.

В приложениях, впрочем, лучше смотреть на отдельные программы, а не на общий результат. Действительно, приложения кодирования аудио, например, вообще не выигрывают от увеличения числа ядер. С другой стороны, приложения кодирования видео дают серьёзные преимущества от большего числа ядер CPU, хотя всё довольно сильно зависит от используемого кодера. В случае программы 3D-рендеринга 3ds Max мы видим, что она серьёзно оптимизирована под многоядерные окружения, а приложения редактирования 2D-фотографий, подобные Photoshop, не реагируют на количество ядер. Антивирус AVG показал серьёзное увеличение производительности на нескольких ядрах, а на утилитах сжатия файлов выигрыш не такой большой.

Что же касается игр, то при переходе от одного ядра на два производительность увеличивается на 60%, а после добавления в систему третьего ядра мы получаем ещё 25% отрыв. Четвёртое ядро в выбранных нами играх не даёт преимуществ. Конечно, если бы мы взяли больше игр, то ситуация могла бы измениться, но, в любом случае, трёхъядерные процессоры Phenom II X3 кажутся весьма привлекательным и недорогим выбором для геймера. Важно отметить, что при переходе на более высокие разрешения и добавлении визуальных деталей, разница из-за количества ядер будет меньшей, поскольку видеокарта станет решающим фактором, влияющим на частоту кадров.


Четыре ядра.

С учётом всего сказанного и сделанного, можно подвести ряд итогов. В целом, вам не нужно быть каким-либо профессиональным пользователем, чтобы выиграть от установки многоядерного CPU. Ситуация существенно изменилась по сравнению с тем, что было четыре года назад. Конечно, разница кажется не такой существенной на первый взгляд, но довольно интересно отметить, насколько сильно приложения стали оптимизироваться под многопоточность в последние несколько лет, особенно те программы, которые от этой оптимизации могут дать существенный прирост производительности. Фактически, можно сказать, что сегодня уже нет смысла рекомендовать одноядерные CPU (если вы такие ещё найдёте), за исключением решений с низким энергопотреблением.

Кроме того, есть приложения, для которых пользователям рекомендуется покупать процессоры с как можно большим числом ядер. Среди них отметим программы кодирования видео, 3D-рендеринга и оптимизированные рабочие приложения, включая антивирусное ПО. Что касается геймеров, то прошли дни, когда одноядерного процессора с мощной видеокартой было достаточно.

Процессор в мобильном телефоне. Характеристики и их значение

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Кэш процессора

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.