Построение функции по таблице истинности онлайн. Проверка домашнего задания

Информатика: аппаратные средства персонального компьютера Яшин Владимир Николаевич

4.3. Логические функции и таблицы истинности

Соотношения между логическими переменными и логическими функциями в алгебре логики можно отобразить также с помощью соответствующих таблиц, которые носят название таблиц истинности. Таблицы истинности находят широкое применение, поскольку наглядно показывают, какие значения принимает логическая функция при всех сочетаниях значений ее логических переменных. Таблица истинности состоит из двух частей. Первая (левая) часть относится к логическим переменным и содержит полный перечень возможных комбинаций логических переменных А, В, С… и т. д. Вторая (правая) часть этой таблицы определяет выходные состояния как логическую функцию от комбинаций входных величин.

Например, для логической функции F = A v B v C (дизъюнкции) трех логических переменных А, В, и С таблица истинности будет иметь вид, показанный на рис. 4.1. Для записи значений логических переменных и логической функции данная таблица истинности содержит 8 строк и 4 столбца, т. е. число строк для записи значений аргументов и функции любой таблицы истинности будет равно 2 n , где п – число аргументов логической функции, а число столбцов равно п + 1.

Рис. 4.1. Таблица истинности для логической функции F = A v В v С

Таблицу истинности можно составить для любой логической функции, например, на рис. 4.2 приведена таблица истинности логической функции F = A ? B ? C (эквиваленции).

Логические функции имеют соответствующие названия. Для двух двоичных переменных существует шестнадцать логических функций, названия которых приведены ниже. На рис. 4.3 представлена таблица, в которой приведены логические функции F 1 , F 2 , F 3 , … , F 16 двух логических переменных A и В.

Функция F 1 = 0 и называется функцией константы нуля, или генератора нуля.

Рис. 4.2. Таблица истинности для логической функции F = A ? B ? C

Рис. 4.3. Логические функции F 1 , F 2 , F 3 ,… F 16 двух аргументов А и В

Функция F 2 = A & B называется функцией конъюнкции.

А.

Функция F 4 = А А.

называется функцией запрета по логической переменной В.

Функция F 6 = В называется функцией повторения по логической переменной В.

называется функцией исключающее «ИЛИ».

Функция F 8 = A v В называется функцией дизъюнкции.

называется функцией Пирса.

называется функцией эквиваленции.

В.

Функция F 12 = B ? A B ? A.

называется функцией отрицания (инверсии) по логической переменной А.

Функция F 14 = A ? B называется функцией импликации A ? B .

называется функцией Шеффера.

Функция F 16 = 1 называется функцией генератора 1.

Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:

Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.

При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.

Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»

Как видно из рис. 4.4, в состав логических функций программы MS Excel входит функционально полный набор логических функций, состоящий из следующих логических функций: И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание). Таким образом, с помощью функционально полного набора логических функций программы MS Excel можно реализовать другие функции. Логическая функция ЕСЛИ (импликация), также входящая в логические функции MS Excel, выполняет логическую проверку и в зависимости от результата проверки выполняет одно из двух возможных действий. В данной программе она имеет следующий формат: = ЕСЛИ (арг1;арг2;арг3), где арг1 – логическое условие; арг2 – возвращаемое значение при условии, что значение аргумента арг1 выполняется (ИСТИНА); арг3 – возвращаемое значение при условии, что значение аргумента арг1 не выполняется (ЛОЖЬ). Например, если в произвольную ячейку листа программы MS Excel ввести выражение « = ЕСЛИ (А1 = 5; „пять“; „не пять“)», то при вводе числа 5 в ячейку А1 и нажатии клавиши «Enter» в ячейке А1 автоматически будет записано слово «пять», при вводе любого другого числа в ячейку А1 в ней запишется слово «не пять». Как уже отмечалось, с помощью логических функций программы MS Excel можно представить другие логические функции и соответствующие им таблицы истинности.

Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции F = А & В (конъюнкции), состоящую из двух строк и трех столбцов, которая позволяет при изменении значений (0 или 1) логических переменных А и В автоматически устанавливать, например, в ячейке Е6 значение функции F = А & В, соответствующее значениям этих логических переменных. Для этого в ячейку Е6 введем следующее выражение: «=ЕСЛИ(И(С6;D6);1;0)», тогда при вводе в ячейки С6 и D6 значений 0 или 1 в ячейке Е6 будет выполняться логическая функция F = А & В. Результат этих действий представлен на рис. 4.5.

Рис. 4.5. Реализация модифицированной таблицы истинности логической функции F = A & В

Данный текст является ознакомительным фрагментом. Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Логические команды Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Логические функции в Excel При расчетах часто приходится выбирать формулу в зависимости от конкретных условий. Например, при расчете заработной платы могут применяться разные надбавки в зависимости от стажа, квалификации или конкретных условий труда, которые вычисляются

Из книги Excel. Мультимедийный курс автора Мединов Олег

Логические функции Логические функции могут найти применение при математических, инженерных вычислениях или при сравнительном анализе данных. Мы рассмотрим одну логическую функцию на примере функции ЕСЛИ.С помощью функции ЕСЛИ вы можете создать логическое выражение и

Из книги Информатика: аппаратные средства персонального компьютера автора Яшин Владимир Николаевич

4.1. Логические переменные и логические операции Информация (данные, машинные команды и т. д.) в компьютере представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Электрический сигнал, проходящий по электронным схемам и соединительным

Из книги Справочник по PHP автора

Логические функции определения типа переменной is_scalarПроверяет, является ли переменная простой.Синтаксис:bool is_scalar(mixed var)Возвращает true, если var имеет скалярный тип (чила, строки, логические значения), но не комплексный (массивы или объекты).is_nullПроверяет, является ли

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Логические операторы Логические операторы выполняют действия над логическими значениями. Все они приведены в табл. 14.5. А в табл. 14.6 и 14.7 показаны результаты выполнения этих операторов.Основная область применения логических операторов - выражения сравнения (о них см.

Из книги XSLT автора Хольцнер Стивен

Логические функции XPath XPath также поддерживает следующий набор логических функций: boolean(). Приводит аргумент к логическому значению; false(). Возвращает false (ложь); lang(). Проверяет, совпадает ли язык, установленный в атрибуте xml:lang, с языком, переданным в функцию; not().

Из книги Технология XSLT автора Валиков Алексей Николаевич

Логические операции В XSLT имеются две логические операции - or и and. Эти операции бинарны, то есть каждая из них определена для двух операндов. Если операнды не являются булевыми значениями, они неявным образом приводятся к булевому типу.Семантика or и and очевидна - они

Из книги Язык программирования Си для персонального компьютера автора Бочков C. О.

Логические операции Логические операции выполняют над своими операндами логические функции И (&&) и ИЛИ (||). Операнды логических операций могут иметь целый, плавающий тип, либо быть указателями. Типы первого и второго операндов могут различаться. Сначала всегда

Из книги Краткое введение в программирование на Bash автора Родригес Гарольд

Логические И и ИЛИ Вы уже видели, что такое управляющие структуры и как их использовать. Для решения тех же задач есть еще два способа. Это логическое И - "&&" и логическое "ИЛИ" - « || ». Логическое И используется следующим образом:выражение_1&&выражение_2Сначала

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Логические операторы Firebird предоставляет три логических оператора, которые могут работать с другими предикатами разными способами.* NOT задает отрицание условия поиска, к которому он применяется. Он имеет наивысший приоритет.* AND создает сложный предикат, объединяет два

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Понимание истинности и ложности Семантически, если предикат возвращает "неопределенность", это не является ни истиной, ни ложью. В SQL при этом утверждения разрешаются только в виде "истина" или "ложь" - утверждение, которое не вычисляется как "истина", рассматривается как

Из книги Восстановление данных на 100% автора Ташков Петр Андреевич

IV. Логические операции Обычно логические операции "считают" условные выражения операндами. Операция! имеет один операнд, расположенный справа. Остальные операции имеют два операнда: один слева и один справа. && Логическое И: результат операции имеет значение "истина",

Из книги C++ для начинающих автора Липпман Стенли

Логические нарушения Если накопитель исправен физически, но представляется как пустой или неформатированный, а находящиеся на нем данные не видны операционной системе, то в данном случае повреждены служебные таблицы файловой системы.Данные почти всегда остаются на

Из книги Описание языка PascalABC.NET автора Коллектив РуБоард

12.3.4. Логические объекты-функции Логические объекты-функции поддерживают операции "логическое И" (возвращает true, если оба операнда равны true, – применяет оператор &&, аcсоциированный с типом Type), "логическое ИЛИ" (возвращает true, если хотя бы один из операндов равен true, –

Из книги автора

Логические операции К логическим относятся бинарные операции and, or и xor, а также унарная операция not, имеющие операнды типа boolean и возвращающие значение типа boolean. Эти операции подчиняются стандартным правилам логики: a and b истинно только тогда, когда истинны a и b, a or b истинно

1. Определить порядок действий.

2. Определить размерность таблицы истинности.


Количество столбцов определяется количеством логических переменных (их две А, В) и количеством действий (их тоже два).


4. Сформулировать ответ.
В последнем столбце один "0", соответствующий А, равному "1", и В, равному "0". Получается, что данная функция ложна тогда и только тогда, когда логическая переменная А истинна, а логическая переменная В ложна, что соответствует логической функции СЛЕДСТВИЕ.
Значит, данная функция равна логическому следствию переменных А и В: Если А, то В.

Составить таблицу истинности для логической функции:


1. Определить порядок действий.


2. Определить размерность таблицы истинности.

"Шапка" таблицы содержит две строки - номера действий и логические операции действий.
Количество столбцов определяется количеством логических переменных (их две А, В) и количеством действий (их пять).
Количестко строк в таблице равно двойке в степени, равной количеству логических переменных - в случае двух переменных получается 4 строки..
3. Поочередно заполнить столбики таблицы в соответствии с логической функцией данного столбца.


4. Сформулировать ответ.
В последнем столбце "1", соответствуют А равному В, а "0" - А неравному В. Получается, что данная функция истинна, когда А равно В и ложна, когда А не равно В, что соответствует логической функции ТОЖДЕСТВО.
Значит, данная функция равна логическому ТОЖДЕСТВУ переменных А и В: А тождественно В.

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» - единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.

Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

Определение 1

Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

Определение 2

Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

Определение 3

Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

Рисунок 1.

Приоритетом в выполнении порядка выполнения операций пользуются скобки.

Алгоритм построения таблицы истинности логической функции

    Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка) , $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

    Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

    Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

Рисунок 2.

Пример 1

Составить таблицу истинности логического выражения $D=\bar{A} \vee (B \vee C)$.

Решение:

    Определим количество строк:

    кол-во строк = $2^3 + 1=9$.

    Количество переменных – $3$.

    1. инверсия ($\bar{A}$);
    2. дизъюнкция, т.к. она находится в скобках ($B \vee C$);
    3. дизъюнкция ($\overline{A}\vee \left(B\vee C\right)$) – искомое логическое выражение.

      Кол-во столбцов = $3 + 3=6$.

    Заполним таблицу, учитывая таблицы истинности логических операций.

Рисунок 3.

Пример 2

По данному логическому выражению построить таблицу истинности:

Решение:

    Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

    Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. отрицание ($\bar{C}$);
    2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
    3. конъюнкция ($(A\vee B)\bigwedge \overline{C}$);
    4. отрицание, которое обозначим $F_1$ ($\overline{(A\vee B)\bigwedge \overline{C}}$);
    5. дизъюнкция ($A \vee C$);
    6. конъюнкция ($(A\vee C)\bigwedge B$);
    7. отрицание, которое обозначим $F_2$ ($\overline{(A\vee C)\bigwedge B}$);
    8. дизъюнкция – искомая логическая функция ($\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}$).

Проблема определения истинности выражения встаёт перед многими науками. Любая доказательная дисциплина должна опираться на некоторые критерии истинности доказательств. Наука, изучающая эти критерии, называется алгеброй логики. Основной постулат алгебры логики заключается в том, что любое самое витиеватое утверждение может быть представлено в виде алгебраического выражения из более простых утверждений, истинность или ложность которых легко определить.

Для любого "алгебраического" действия над утверждением задаётся правило определения истинности или ложности измененного утверждения, исходя из истинности или ложности исходного утверждения. Эти правила записываются через таблицы истинности выражения . Прежде, чем составлять таблицы истинности, надо поближе познакомиться с алгеброй логики.

Алгебраические преобразования логических выражений

Любое логическое выражение, как и его переменные (утверждения), принимают два значения: ложь или истина . Ложь обозначается нулём, а истина - единицей. Разобравшись с областью определения и областью допустимых значений, мы можем рассмотреть действия алгебры логики.

Отрицание

Отрицание и инверсия - самое простое логическое преобразование. Ему соответствует частица "не." Это преобразование просто меняет утверждение на противоположное. Соответственно, значение утверждения тоже меняется на противоположное. Если утверждение А истинно, то "не А" - ложно. Например, утверждение "прямой угол - это угол, равный девяносто градусов" - истина. Тогда его отрицание "прямой угол не равен девяноста градусам" - ложь.

Таблица истинности для отрицания будет такова:

Дизъюнкция

Эта операция может быть обычной или строгой , их результаты будут различаться.

Обычная дизъюнкция или логическое сложение соответствует союзу "или". Она будет истинной если хотя бы одно из утверждений, входящих в неё - истина. Например, выражение "Земля круглая или стоит на трёх китах" будет истинным, так как первое утверждение - истинно, хоть второе и ложно.В таблице это будет выглядеть так:

Строгую дизъюнкцию или сложение по модулю также называют "исключающим или" . Эта операция может принимать вид грамматической конструкции "одно из двух: либо..., либо...". Здесь значение логического выражения будет ложным, если все утверждения, входящие в него, имеют одинаковую истинность. То есть, оба утверждения либо вместе истинны, либо вместе ложны.

Таблица значений исключающего или

Импликация и эквивалентность

Импликация представляет собой следствие и грамматически может быть выражена как "из А следует Б". Здесь утверждение А будет называться предпосылкой, а Б - следствием. Импликация может быть ложной, только в одном случае: если предпосылка истинна, а следствие ложно. То есть, ложь не может следовать из истины. Во всех остальных случаях импликация истинна. Варианты, когда оба утверждения имеют одинаковую истинность, вопросов не вызывают. Но почему верное следствие из неверной предпосылки - истина? Дело в том, что из ложной предпосылки может следовать что угодно. Это и отличает импликацию от эквивалентности.

В математике (и других доказательных дисциплинах) импликация используется для указания необходимого условия. Например, утверждение А - "точка О - экстремум непрерывной функции", утверждение Б - "производная непрерывной функции в точке О обращается в ноль". Если О, действительно, точка экстремума непрерывной функции, то производная в этой точке будет, и вправду, равна нулю. Если же О не является точкой экстремума, то производная в этой точке может быть нулевой, а может не быть. То есть Б необходимо для А, но не достаточно.

Таблица истинности для импликации выглядит следующим образом:

Логическая операция эквивалентность, по сути, является взаимной импликацией . "А эквивалентно Б" означает, что "из А следует Б" и "из Б следует А" одновременно. Эквивалентность верна, когда оба утверждения либо одновременно верные, либо одновременно неверные.

В математике эквивалентность используется для определения необходимого и достаточного условия. Например, утверждение А - "Точка О является точкой экстремума непрерывной функции", утверждение Б - "В точке О производная функции обращается в ноль и меняет знак". Эти два утверждения эквивалентны. Б содержит необходимое и достаточное условие для А. Обратите внимание, что в данном примере утверждений Б на самом деле является конъюнкцией двух других: "производная в точке О обращается в ноль" и "производная в точке О меняет знак".

Прочие логические функции

Выше были рассмотрены основные логические операции, которые часто используются. Есть и другие функции, которые используются:

  • Штрих Шеффера или несовместимость представляет собой отрицание конъюнкции А и Б
  • Стрелка Пирса представляет сбой отрицание дизъюнкции.

Построение таблиц истинности

Чтобы построить таблицу истинности для какого-либо логического выражения, надо действовать в соответствии с алгоритмом:

  1. Разбить выражение на простые утверждения и обозначить каждое из них как переменную.
  2. Определить логические преобразования.
  3. Выявить порядок действий этих преобразований.
  4. Сосчитать строки в будущей таблице. Их количество равно два в степени N, где N - число переменных, плюс одна строка для шапки таблицы.
  5. Определить число столбцов. Оно равно сумме количества переменных и количества действий. Можно представлять результат каждого действия в виде новой переменной, если так будет понятней.
  6. Шапка заполняется последовательно, сначала все переменные, потом результаты действий в порядке их выполнения.
  7. Заполнение таблицы надо начать с первой переменной. Для неё количество строк делится пополам. Одна половина заполняется нулями, вторая - единицами.
  8. Для каждой следующей переменной нули и единицы чередуются вдвое чаще.
  9. Таким образом заполняются все столбцы с переменными и для последней переменной значение меняется в каждой строке.
  10. Потом последовательно заполняются результаты всех действий.

В итоге последний столбец отобразит значение всего выражения в зависимости от значения переменных.

Отдельно следует сказать о порядке логических действий . Как его определить? Здесь, как и в алгебре, есть правила, задающие последовательность действий. Они выполняются в следующем порядке:

  1. выражения в скобках;
  2. отрицание или инверсия;
  3. конъюнкция;
  4. строгая и обычная дизъюнкция;
  5. импликация;
  6. эквивалентность.

Примеры

Для закрепления материала можно попробовать составить таблицу истинности для ранее упомянутых логических выражений. Рассмотрим три примера:

  • Штрих Шеффера.
  • Стрелка Пирса.
  • Определение эквивалентности.

Штрих Шеффера

Штрих Шеффера - это логическое выражение, которое можно записать в виде "не (А и Б)". Здесь две переменные, и два действия. Конъюнкция в скобках, значит, она выполняется первой. В таблице будет шапка и четыре строки со значениями переменных, а также четыре столбца. Заполним таблицу:

А Б А и Б не (А и Б)
Л Л Л И
Л И Л И
И Л Л И
И И И Л

Отрицание конъюнкции выглядит как дизъюнкция отрицаний. Это можно проверить, если составить таблицу истинности для выражения "не А или не Б". Проделайте это самостоятельно и обратите внимание, что здесь будет уже три операции.

Стрелка Пирса

Рассматривая Стрелку Пирса, которая представляет собой отрицание дизъюнкции "не (А или Б)", сравним её с конъюнкцией отрицаний "не А и не Б". Заполним две таблицы:

А Б не А не Б не А и не Б
Л Л И И И
Л И И Л Л
И Л Л И И
И И Л Л Л

Значения выражений совпали. Изучив два эти примера, можно прийти к выводу, как раскрывать скобки после отрицания: отрицание применяется ко всем переменным в скобках, конъюнкция меняется на дизъюнкцию, а дизъюнкция - на конъюнкцию.

Определение эквивалентности

Про утверждения А и Б можно сказать, что они эквивалентны, тогда и только тогда, когда из А следует Б и из Б следует А. Запишем это как логическое выражение и построим для него таблицу истинности. "(А эквивалентно Б) эквивалентно (из А следует Б) и (из Б следует А)".

Здесь две переменных и пять действий. Строим таблицу:

В последнем столбце все значения истинные. Это значит, что приведенное определение эквивалентности верно при любых значениях А и Б. Значит, оно всегда истинно. Именно так с помощью таблицы истинности можно проверить корректность любых определений и логических построений.