Pentium последнего поколения. Пять поколений Core i7: от Sandy Bridge до Skylake. Сравнительное тестирование

Мы рассмотрели «топ» худших игровых видеокарт. Теперь же, после выхода Coffee Lake, можно сделать список и худших процессоров, так как на рынке CPU до конца года ничего особо важного не наблюдается. Разумеется, я буду рассматривать только релевантность покупки таких процессоров сейчас: если вы уже владеете одним из «камней» ниже, то, значит, у вас явно были свои причины его брать.

Intel Core i7-7740X и Core-i5 7640X (Kaby Lake-X) - добро пожаловать в 2010 год

На дворе середина 2017. AMD представляет первый честный восьмиядерный десктопный процессор - Ryzen 7. Intel представляет новые процессоры для своей высокопроизводительной платформы, которая теперь называется Skylake-X и Kaby Lake-X. Туда могут входить решения с 16 и даже 18 ядрами, а самый простые представители имеют... стоп, 4 ядра?! Хм, а чем они тогда отличаются от простых i5-7600K и i7-7700K? Частоты те же, количество каналов памяти и линий PCIe такое же, как и наборы команд. Разве что в X-линейке встроенного видеоядра нет, но это скорее минус, чем плюс. С учетом того, что эти процессоры стоят дороже неиксовых собратьев, да и материнские платы на X299 чипсете дорогие - нет абсолютно никакого смысла в покупке этих «камней», и трудно объяснить смысл их выпуска - ну разве что у Intel завалялось много ненужных 4-ядерных кристаллов.

AMD FX - прощай, игровой бульдозер


Линейка FX, которая была топовой до выхода Ryzen на протяжении почти семи лет, теперь может смело отправлять на покой. По правде говоря - даже на момент выхода она не была топовой: и хотя программы показывали, что линейка FX-8000 имеет аж 8 ядер, на деле это были 4 APU, и по тестам самый топ FX оказывался на уровне лучших i5, i7 же были не достигаемы - именно поэтому Intel тогда и не «зачесалась», продолжая выпускать новые процессоры с приростом в 5% производительности за поколение. До выхода 4-поточных Pentium в начале этого года имело смысл покупать FX-4000 линейки - они стоили крайне дешево, но при этом позволяли создать базовую игровую систему с видеокартами уровня GTX 750 Ti и даже GTX 950. Но, увы, новые Pentium оказались настолько хороши, что оставили младшие FX без работы. Ну а старших представителей, FX-8000, AMD «добили» сами, выпустив младшие Ryzen 3 по той же цене и с более высокой производительностью и меньшим тепловыделением. Так что линейке FX, которая когда-то была хорошим выбором для построения среднебюджетных игровых сборок, теперь окончательно пора на покой.

Но все же эти процессоры можно брать в одном случае - ради апгрейда: к примеру, если у вас стоит FX-4000 линейки, то сейчас самое время обновиться до FX-8000 - вы получите прирост производительности вдвое за достаточно небольшие деньги. С учетом того, что 8000 линейка вытягивает видеокарты уровня GTX 1060 или RX 580 - вы вполне сможете с комфортом поиграть еще пару-тройку лет.

Большинство представителей линеек Skylake и Kaby Lake - Intel душит «старье»


Слухи о том, что Intel должна выпустить десктопные процессоры с большим числом ядер, витали давно, и вот это произошло, и с 5 октября интернет заполонили их тесты. И, увы, по ним хорошо видно, что предыдущим линейкам больше нет места под Солнцем: зачем брать 8поточный процессор за 19 тысяч рублей, если младший 12поточный стоит всего 20.5 тысяч, и даже в разгоне предыдущее поколение хуже минимум на 20%? Аналогично и с i5, и тем более с i3 6ого и 7ого поколений - последние и так были бессмысленными процессорами на рынке после появления новых Pentium, теперь же, после выхода 4ядерных i3 8ого поколения, i3 Skylake и Kaby Lake точно можно списывать в утиль.

К слову, теперь линейка процессоров от Intel выглядит вполне логично: самый-самый low-level это 2-ядерные Celeron: их вполне хватает для комфортной работы в интернете и просмотра фильмов, и даже простых игр типа Dota, WoT и CS:GO. Следующей ступенью становятся Pentium, которые имеют все те же 2 ядра, но уже 4 потока, и несколько большие частоты - на их базе можно уже собрать low-middle level игровую систему. Core i3, которые теперь 4-ядерные, встают еще на ступеньку выше, позволяя собрать middle-level сборку. Ну и для топа есть 6-ядерные i5 и i7 - для тех, кто хочет получить лучшее игровое решение на рынке.

Но, однако, есть одна причина, по которой «старые» процессоры брать стоит, и она все та же - апгрейд. К примеру, пару лет назад вы взяли себе младший i5-6400. А сейчас есть хорошая возможность обновить его до i7-7700K, и получить двукратный прирост производительности, да еще и не очень дорого (особенно если продать i5).

Линейка Haswell-E и Broadwell-E - старички по топовым ценам


Давайте посмотрим, сколько стоит 8ядерный процессор новой линейки Skylake-X - Intel Core i7-7820X. В московской рознице ценник на него составляет порядка 40 тысяч рублей. Дорого, скажете вы? Ну, тут за эту цену мы получаем 8 ядер на новой архитектуре с частотой в 4 ГГц - вполне себе неплохо для высокопроизводительного ПК. Все равно дорого? Хм, ладно, давайте глянем на процессоры предыдущего поколения - ведь они должны быть дешевле, правда? Так, аналог из Broadwell-E это i7-6900X: тоже 8 ядер, но на предыдущей архитектуре, да и частоты около 3.5 ГГц. А цена... 70 тысяч рублей?! Откуда? Почему? Давайте поищем плюсы старого процессора. И таки да, находим один - это припой под крышкой, что позволяет его разогнать лучше, чем представителей Skylake-X с «майонезом» вместо припоя. Но даже если вам очень повезет, и вы разгоните i7-6900X так, чтобы он оказался на уровне i7-7820X - почти двукратную разницу в цене это не уберет.

В итоге Intel в этом году убила сразу две старые линейки - Broadwell-E и Kaby Lake, причем последней и года-то нет. Вот такая она, монополия...

AMD Ryzen с X - компания наступает на те же грабли


Те, кто помнит процессоры AMD FX, знает, что переплачивать за старшие процессоры в линейке не имело никакого смысла - все процессоры можно было разогнать, так что младший «камень» превращался в старший одним легким мановением руки. И зачем-то AMD это продолжила и в Ryzen, причем тут это доходит до абсурда: к примеру, младший Ryzen 7 1700 стоит около 20 тысяч рублей. Старший 7 1800X стоит уже 30 тысяч - в полтора раза дороже. А разгонный потенциал у них одинаков - около 4 ГГц. Стоит ли переплачивать за 1800X? Думаю, ответ очевиден. И так во всех линейках Ryzen - 3, 5 и 7 - имеет смысл брать младший процессор, без индекса X, и разгонять до уровня старшего.

AMD Bristol Ridge - для тех, у кого нет денег на Ryzen


AMD все с тем же упорством продолжает развивать свои APU - системы два в одном, где средний по уровню CPU включает в себя полноценную графику от AMD, только с меньшим числом вычислительных блоков и частотой, чем в полноценных видеокартах. В принципе, вполне неплохое решение для тех, кому нужен простой домашний ПК - производительности процессора хватит, чтобы ОС, браузер и фильмы работали быстро, а GPU позволит поиграть даже в новые игры, правда в разрешении HD и с низкими настройками графики. Ну и самое главное - новые APU совместимы с AM4, то есть в будущем никто не мешает заменить такой процессор на какой-нибудь Ryzen 7, что неплохо подходит тем, кто собирает себе ПК этапами.

Но, с другой стороны - да, это бюджетное решение, но почему оно основано на архитектуре Excavator, которой 7 лет в обед, да и еще и на 28 нм?! Неужели было так трудно сделать эти «камни» на Zen, что к тому же позволило бы и тепловыделение снизить с 65 до приемлемых для такой системы 30 Вт? В общем, APU странные - с одной стороны новые, с другой - древние. Но, в принципе, своих покупателей они найти могут.

Но что-то мы заговорились про десктопы, пора бы и к мобильным процессорам перейти, ибо тут тоже полно странных «фич».

Intel Celeron N3050 и N3350 - хуже Atom за те же деньги

Почему-то у брендовых производителей ноутбуков есть одна фишка - в нетбуки/ноутбуки ставим Celeron и Pentium, а в планшеты - Atom. Казалось бы - все верно, Celeron должен быть лучше Atom, ан нет - Intel думает по-другому: архитектура у этих процессоров схожа, но вот вычислительных ядер у Atom 4, когда у Celeron только 2. С учетом того, что мы рассматриваем самый low-level (10-15 тысяч рублей), пара ядер тут лишними не будут, и, если ноутбуки на Celeron вполне могут начать зависать при 3-4 вкладках в Chrome, Atom вполне себе вытянет одновременный серфинг и просмотр фильма PiP. А с учетом того, что за $150 про качество брендовых нетбуков можно просто промолчать - имеет смысл взять решение от всяких Digma или iRu, но с Atom, и получить серьезно лучшую производительность за те же деньги.

Intel Core i3-6006U и Pentium 4405U - i3 хуже Pentium


После Atom, который лучше Celeron, казалось бы, куда хуже. Однако в дно постучали - достаточно массовый в сегменте 18-25 тысяч рублей i3-6006U... хуже своего собрата в том же сегменте, но из стана Pentium! Давайте посмотрим на эти процессоры ближе: оба имеют по 2 ядра и 4 потока, одинаковый набор инструкций, однако у Pentium на 100 МГц выше частота, но при этом вдвое хуже интегрированная графика: HD 510 против HD 520 у i3. Казалось бы - 100 МГц частоты (+5%) точно не перевесит вдвое худшую графику, однако тут есть два нюанса:

  1. Если в ноутбуке есть дискретная графика (а зачастую она есть - это Nvidia GT 920M), то на интегрированную графику вообще без разницы - в играх будет работать именно «дискретка», так что тут чуть более высокочастотный Pentium лучше.
  2. Если же человек выбрал себе ноутбук без дискретной графики, то значит игры ему не нужны, а с отрисовкой GUI и воспроизведением в том числе 1080p60 обе интегрированные видеокарты справляются одинаково хорошо, то есть опять же нет смысла брать i3.
В итоге Pentium оказывается чуть лучше и даже зачастую чуть дешевле. Но, увы, i3 звучит более гордо, чем Pentium, поэтому производители ноутбуков лепят именно первый процессор, но, если у вас есть возможность взять Pentium за ту же сумму - лучше берите его. Дешевле - тем более берите.

Мобильные процессоры от AMD - Intel таки выиграла войну

То, что AMD толком не обновляла свои мобильные процессоры пару лет, а Intel даже в низковольтных решениях нарастила число ядер до 4, привело к тому, что ноутбуки с процессорами от AMD просто не имеет смысла покупать - аналоги на процессорах от Intel будут и производительнее, и автономнее. Да, «красные» не хотят терять мобильный рынок, и активно делают мобильные Ryzen, но пока что единственное, что есть в интернете - это пара тестов, где процессоры от AMD опять выступают не в лучшем свете. Конечно, когда они выйдут, все может измениться, но пока что в мобильном сегменте царствует Intel. Подробнее об этом можно почитать .

Что в итоге? А в итоге такой же разброд и шатание, как и с видеокартами - есть отличные решения, есть хорошие, а есть те, при виде которых думаешь - а чем руководствовался производитель при выпуске этого ?! Но, что радует - рынок процессоров последнее время серьезно зашевелился, и в основном благодаря AMD: Intel выкатила 6-ядерные десктопные процессоры в ответ на 8-ядерные Ryzen, в мобильном сегменте также выросло число ядер в тех же линейках. Так что те, кто хотел обновиться или собрать новый ПК - имхо, самое время приступать.

2 июня компания Intel анонсировала десять новых 14-нанометровых процессоров для настольных и мобильных ПК семейства Intel Core пятого поколения (кодовое наименование Broadwell-С) и пять новых 14-нанометровых процессоров семейства Intel Xeon E3-1200 v4.

Из десяти новых процессоров Intel Core пятого поколения (Broadwell-С) для настольных и мобильных ПК только два процессора ориентированы на настольные ПК и имеют разъем LGA 1150: это четырехъядерные модели Intel Core i7-5775C и Core i5-5675C. Все остальные процессоры Intel Core пятого поколения имеют BGA-исполнение и ориентированы на ноутбуки. Краткие характеристики новых процессоров Broadwell-С представлены в таблице.

Разъем Количество ядер/потоков Размер кэша L3, МБ TDP, Вт Графическое ядро
Core i7-5950HQ BGA 4/8 6 2,9/3,7 47 Iris Pro Graphics 6200
Core i7-5850HQ BGA 4/8 6 2,7/3,6 47 Iris Pro Graphics 6200
Core i7-5750HQ BGA 4/8 6 2,5/3,4 47 Iris Pro Graphics 6200
Core i7-5700HQ BGA 4/8 6 2,7/3,5 47 Intel HD Graphics 5600
Core i5-5350H BGA 2/4 4 3,1/3,5 47 Iris Pro Graphics 6200
Core i7-5775R BGA 4/8 6 3,3/3,8 65 Iris Pro Graphics 6200
Core i5-5675R BGA 4/4 4 3,1/3,6 65 Iris Pro Graphics 6200
Core i5-5575R BGA 4/4 4 2,8/3,3 65 Iris Pro Graphics 6200
Core i7-5775C LGA 1150 4/8 6 3,3/3,7 65 Iris Pro Graphics 6200
Core i5-5675C LGA 1150 4/4 4 3,1/3,6 65 Iris Pro Graphics 6200

Из пяти новых процессоров семейства Intel Xeon E3-1200 v4 только три модели (Xeon E3-1285 v4, Xeon E3-1285L v4, Xeon E3-1265L v4) имеют разъем LGA 1150, а еще две модели выполнены в BGA корпусе и не предназначены для самостоятельной установки на материнскую плату. Краткие характеристики новых процессоров семейства Intel Xeon E3-1200 v4 представлены в таблице.

Разъем Количество ядер/потоков Размер кэша L3, МБ Частота номинальная /максимальная, ГГц TDP, Вт Графическое ядро
Xeon E3-1285 v4 LGA 1150 4/8 6 3,5/3,8 95 Iris Pro Graphics P6300
Xeon E3-1285L v4 LGA 1150 4/8 6 3,4/3,8 65 Iris Pro Graphics P6300
Xeon E3-1265L v4 LGA 1150 4/8 6 2,3/3,3 35 Iris Pro Graphics P6300
Xeon E3-1278L v4 BGA 4/8 6 2,0/3,3 47 Iris Pro Graphics P6300
Xeon E3-1258L v4 BGA 2/4 6 1,8/3,2 47 Intel HD Graphics P5700

Таким образом, из 15 новых процессоров Intel лишь пять моделей имеют разъем LGA 1150 и ориентированы на настольные системы. Для пользователей выбор, конечно, небольшой, особенно если учесть, что процессоры семейства Intel Xeon E3-1200 v4 ориентированы на серверы, а не на пользовательские ПК.

В дальнейшем мы сосредоточимся на рассмотрении новых 14-нанометровых процессоров с разъемом LGA 1150.

Итак, основными особенностями новых процессоров Intel Core пятого поколения и процессоров семейства Intel Xeon E3-1200 v4 является новая 14-нанометровая микроархитектура ядер с кодовым названием Broadwell. В принципе, никакого принципиального отличия между процессорами семейства Intel Xeon E3-1200 v4 и процессорами Intel Core пятого поколения для настольных систем нет, поэтому в дальнейшем все эти процессоры мы будем обозначать как Broadwell.

Вообще, нужно отметить, что микроархитектура Broadwell - это не просто Haswell в 14-нанометровом исполнении. Скорее, это немного улучшенная микроархитектура Haswell. Впрочем, Intel так делает всегда: при переходе на новый техпроцесс производства вносятся и изменения в саму микроархитектуру. В случае с Broadwell речь идет о косметических улучшениях. В частности, увеличены объемы внутренних буферов, есть изменения в исполнительных блоках ядра процессора (изменена схема выполнения операций умножения и деления чисел с плавающей запятой).

Подробно рассматривать все особенности микроархитектуры Broadwell мы не будем (это тема для отдельной статьи), но еще раз подчеркнем, что речь идет лишь о косметических изменениях микроархитектуры Haswell, а потому, не стоит ожидать, что процессоры Broadwell окажутся более производительными, чем процессоры Haswell. Конечно, переход на новый техпроцесс позволил снизить энергопотребление процессоров (при равной тактовой частоте), но никаких существенных приростов производительности ожидать не стоит.

Пожалуй, наиболее существенное отличие новых процессоров Broadwell от Haswell заключается в кэше четвертого уровня (L4-кэш) Crystalwell. Уточним, что такой кэш L4 присутствовал в процессорах Haswell, но лишь в топовых моделях мобильных процессоров, а в процессорах Haswell для настольных ПК c разъемом LGA 1150 его не было.

Напомним, что в некоторых топовых моделях мобильных процессоров Haswell было реализовано графическое ядро Iris Pro с дополнительной памятью eDRAM (embedded DRAM), что позволяло решить проблему с недостаточной пропускной способностью памяти, используемой для GPU. Память eDRAM, представляла собой отдельный кристалл, который располагался на одной подложке с кристаллом процессора. Этот кристалл получил кодовое наименование Crystalwell.

Память eDRAM имела размер 128 МБ и изготовлялась по 22-нанометровому техпроцессу. Но самое главное, что эта eDRAM память использовалась не только для нужд GPU, но и для вычислительных ядер самого процессора. То есть фактически, Crystalwell представлял собой L4-кэш, разделяемый между GPU и вычислительными ядрами процессора.

Во всех новых процессорах Broadwell также присутствует отдельный кристалл памяти eDRAM размером 128 МБ, который выступает в роли кэша L4 и может использоваться графическим ядром и вычислительными ядрами процессора. Причем, отметим, что память eDRAM в 14-нанометровых процессорах Broadwell точно такая же, как и в топовых мобильных процессорах Haswell, то есть выполняется по 22-нанометровому техпроцессу.

Следующая особенность новых процессоров Broadwell заключается в новом графическом ядре с кодовым наименованием Broadwell GT3e. В варианте процессоров для настольных и мобильных ПК (Intel Core i5/i7) - это Iris Pro Graphics 6200, а в процессорах семейства Intel Xeon E3-1200 v4 - это Iris Pro Graphics P6300 (за исключением модели Xeon E3-1258L v4). Углубляться в особенности архитектуры графических ядер Broadwell GT3e мы не станем (это тема для отдельной статьи) и лишь вкратце рассмотрим его основные особенности.

Напомним, что графическое ядро Iris Pro до этого присутствовало лишь в мобильных процессорах Haswell (Iris Pro Graphics 5100 и 5200). Причем, в графических ядрах Iris Pro Graphics 5100 и 5200 присутствует по 40 исполнительных устройств (EU). Новые графические ядра Iris Pro Graphics 6200 и Iris Pro Graphics P6300 наделены уже 48 EU, причем изменилась и система организации EU. Каждый отдельный блок графического процессора содержит по 8 EU, а графический модуль объединяет по три графических блока. То есть в одном графическом модуле содержится 24 EU, а в самом графическом процессоре Iris Pro Graphics 6200 или Iris Pro Graphics P6300 объединяются по два модуля, то есть в сумме получаем 48 EU.

Что касается разницы между графическими ядрами Iris Pro Graphics 6200 и Iris Pro Graphics P6300, то на уровне «железа» это одно и то же (Broadwell GT3e), а вот драйвера у них разные. В варианте Iris Pro Graphics P6300 драйвера оптимизированы под задачи, специфические для серверов и графических станций.

Прежде чем переходить к детальному рассмотрению результатов тестирования Broadwell, расскажем еще о нескольких особенностях новых процессоров.

Прежде всего, новые процессоры Broadwell (включая и Xeon E3-1200 v4) совместимы с материнскими платами на базе чипсетов Intel 9-серии. Мы не можем утверждать, что любая плата на базе чипсета Intel 9-серии будет поддерживать эти новые процессоры Broadwell, но большинство плат их поддерживают. Правда, для этого придется обновить BIOS на плате, причем BIOS должна поддерживать новые процессоры. К примеру, для тестирования мы использовали плату ASRock Z97 OC Formula и без обновления BIOS система работала только при наличии дискретной видеокарты, а вывод изображения через графическое ядро процессоров Broadwell был невозможен.

Следующая особенность новых процессоров Broadwell в том, что модели Core i7-5775C и Core i5-5675С имеют разблокированный коэффициент умножения, то есть ориентированы на разгон. В семействе процессоров Haswell такие процессоры с разблокированным коэффициентом умножения составляли K-серию, а в семействе Broadwell вместо буквы «К» используется буква «C». А вот процессоры Xeon E3-1200 v4 разгон не поддерживают (у них невозможно увеличить коэффициент умножения).

Теперь познакомимся поближе с теми процессорами, которые попали к нам на тестирование. Это модели , и . Фактически, из пяти новых моделей с разъемом LGA 1150 не хватает лишь процессора Xeon E3-1285L v4, который отличается от модели Xeon E3-1285 v4 лишь более низким энергопотреблением (65 Вт вместо 95 Вт) и тем, что номинальная тактовая частота ядер у него чуть ниже (3,4 ГГц вместо 3,5 ГГц). Кроме того, для сравнения мы добавили также Intel Core i7-4790K, который является топовым процессором в семействе Haswell.

Характеристики всех протестированных процессоров представлены в таблице:

Xeon E3-1285 v4 Xeon E3-1265L v4 Core i7-5775C Core i5-5675С Core i7-4790K
Техпроцесс, нм 14 14 14 14 22
Разъем LGA 1150 LGA 1150 LGA 1150 LGA 1150 LGA 1150
Количество ядер 4 4 4 4 4
Количество потоков 8 8 8 4 8
Кэш L3, МБ 6 6 6 4 8
Кэш L4 (eDRAM), МБ 128 128 128 128 N/A
Номинальная частота, ГГц 3,5 2,3 3,3 3,1 4,0
Максимальная частота, ГГц 3,8 3,3 3,7 3,6 4,4
TDP, Вт 95 35 65 65 88
Тип памяти DDR3-1333/1600/1866 DDR3 -1333/1600
Графическое ядро Iris Pro Graphics P6300 Iris Pro Graphics P6300 Iris Pro Graphics 6200 Iris Pro Graphics 6200 HD Graphics 4600
Количество исполнительных блоков GPU 48 (Broadwell GT3e) 48 (Broadwell GT3e) 48 (Broadwell GT3e) 48 (Broadwell GT3e) 20 (Haswell GT2)
Номинальная частота графического процессора, МГц 300 300 300 300 350
Максимальная частота графического процессора, ГГц 1,15 1,05 1,15 1,1 1,25
Технология vPro + +
Технология VT-x + + + + +
Технология VT-d + + + + +
Стоимость, $ 556 417 366 276 339

А теперь, после нашего экспресс-обзора новых процессоров Broadwell, перейдем непосредственно к тестированию новинок.

Тестовый стенд

Для тестирования процессоров мы использовали стенд следующей конфигурации:

Методика тестирования

Тестирование процессоров проводилось с использованием наших скриптовых бенчмарков , и . Если точнее, то за основу мы взяли методику тестирования рабочих станций, но расширили ее, дополнив тестами из пакета iXBT Application Benchmark 2015 и игровыми тестами iXBT Game Benchmark 2015.

Таким образом, для тестирования процессоров использовались следующие приложения и бенчмарки:

  • MediaCoder x64 0.8.33.5680
  • SVPmark 3.0
  • Adobe Premiere Pro CC 2014.1 (Build 8.1.0)
  • Adobe After Effects CC 2014.1.1 (Version 13.1.1.3)
  • Photodex ProShow Producer 6.0.3410
  • Adobe Photoshop CC 2014.2.1
  • ACDSee Pro 8
  • Adobe Illustrator CC 2014.1.1
  • Adobe Audition CC 2014.2
  • Abbyy FineReader 12
  • WinRAR 5.11
  • Dassault SolidWorks 2014 SP3 (пакет Flow Simulation)
  • SPECapc for 3ds max 2015
  • SPECapc for Maya 2012
  • POV-Ray 3.7
  • Maxon Cinebench R15
  • SPECviewperf v.12.0.2
  • SPECwpc 1.2

Кроме того, для тестирования использовались игры и игровые бенчмарки из пакета iXBT Game Benchmark 2015. Тестирование в играх производилось при разрешении 1920х1080.

Дополнительно мы измерили энергопотребление процессоров в режиме простоя и стрессовой загрузки. Для этого использовался специализированный программно-аппаратный комплекс, подключаемый в разрыв цепей питания системной платы, то есть между блоком питания и системной платой.

Для создания стрессовой загрузки процессора мы использовали утилиту AIDA64 (тесты Stress FPU и Stress GPU).

Результаты тестирования

Энергопотребление процессоров

Итак, начнем с результатов тестирования процессоров на энергопотребление. Результаты тестирования представлены на диаграмме.

Самым прожорливым в плане энергопотребления, как и следовало ожидать, оказался процессор Intel Core i7-4790K с заявленным TDP 88 Вт. Его реальное энергопотребление в режиме стрессовой загрузки составило 119 Вт. При этом, температура ядер процессора составляла 95 °C и наблюдался троттлинг.

Следующим по энергопотреблению был процессор Intel Core i7-5775C с заявленным TDP 65 Вт. Для этого процессора энергопотребление в режиме стрессовой загрузки составило 72,5 Вт. Температура ядер процессора достигала 90 °C, но троттлинг не наблюдался.

Третье месте по энергопотреблению занял процессор Intel Xeon E3-1285 v4 c TDP 95 Вт. Его энергопотребление в режиме стрессовой загрузки составило 71 Вт, а температура ядер процессора составляла 78 °C

А самым экономичным в плане энергопотребления оказался процессор Intel Xeon E3-1265L v4 c TDP 35 Вт. В режиме стрессовой загрузки энергопотребление этого процессора не превосходило 39 Вт, а температура ядер процессора составляла всего 56 °C.

Что ж, если ориентироваться на энергопотребление процессоров, то нужно констатировать, что Broadwell имеет существенно более низкое энергопотребление в сравнении с Haswell.

Тесты из пакета iXBT Application Benchmark 2015

Начнем с тестов, входящих в состав бенчмарка iXBT Application Benchmark 2015. Отметим, что интегральный результат производительности мы рассчитывали как среднее геометрическое результатов в логических группах тестов (видеоконвертирование и видеообработка, создание видеоконтента и т. д.). Для расчета результатов в логических группах тестов использовалась та же самая референсная система, что и в бенчмарке iXBT Application Benchmark 2015.

Полные результаты тестирование приведены в таблице. Кроме того, мы приводим результаты тестирования по логическим группам тестов на диаграммах в нормированном виде. За референсный принимается результат процессора Core i7-4790K.

Логическая группа тестов Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
Видеоконвертирование и видеообработка, баллы 364,3 316,7 272,6 280,5 314,0
MediaCoder x64 0.8.33.5680, секунды 125,4 144,8 170,7 155,4 132,3
SVPmark 3.0, баллы 3349,6 2924,6 2552,7 2462,2 2627,3
Создание видеоконтента, баллы 302,6 264,4 273,3 264,5 290,9
Adobe Premiere Pro CC 2014.1, секунды 503,0 579,0 634,6 612,0 556,9
Adobe After Effects CC 2014.1.1 (Test #1), секунды 666,8 768,0 802,0 758,8 695,3
Adobe After Effects CC 2014.1.1 (Test #2), секунды 330,0 372,2 327,3 372,4 342,0
Photodex ProShow Producer 6.0.3410, секунды 436,2 500,4 435,1 477,7 426,7
Обработка цифровых фотографий, баллы 295,2 258,5 254,1 288,1 287.0
Adobe Photoshop CC 2014.2.1, секунды 677,5 770,9 789,4 695,4 765,0
ACDSee Pro 8, секунды 289,1 331,4 334,8 295,8 271,0
Векторная графика, баллы 150,6 130,7 140,6 147,2 177,7
Adobe Illustrator CC 2014.1.1, секунды 341,9 394,0 366,3 349,9 289,8
Аудиообработка, баллы 231,3 203,7 202,3 228,2 260,9
Adobe Audition CC 2014.2, секунды 452,6 514,0 517,6 458,8 401,3
Распознавание текста, баллы 302,4 263,6 205,8 269,9 310,6
Abbyy FineReader 12, секунды 181,4 208,1 266,6 203,3 176,6
Архивирование и разархивирование данных, баллы 228,4 203,0 178,6 220,7 228,9
WinRAR 5.11 архивирование, секунды 105,6 120,7 154,8 112,6 110,5
WinRAR 5.11 разархивирование, секунды 7,3 8,1 8,29 7,4 7,0
Интегральный результат производительности, баллы 259,1 226,8 212,8 237,6 262,7

Итак, как видно по результатам тестирования, по интегральной производительности процессор Intel Xeon E3-1285 v4 практически не отличается от процессора Intel Core i7-4790K. Однако, это интегральный результат по совокупности всех используемых в бенчмарке приложений.

Тем не менее, есть ряд приложений, в которых преимущество на стороне процессора Intel Xeon E3-1285 v4. Это такие приложения, как MediaCoder x64 0.8.33.5680 и SVPmark 3.0 (видеоконвертирование и видеообработка), Adobe Premiere Pro CC 2014.1 и Adobe After Effects CC 2014.1.1 (создание видеоконтента), Adobe Photoshop CC 2014.2.1 и ACDSee Pro 8 (обработка цифровых фотографий). В этих приложениях более высокая тактовая частота процессора Intel Core i7-4790K не дает ему преимущества над процессором Intel Xeon E3-1285 v4.



А вот в таких приложениях, как Adobe Illustrator CC 2014.1.1 (векторная графика), Adobe Audition CC 2014.2 (аудиообработка), Abbyy FineReader 12 (распознавание текста) преимущество оказывается на стороне более высокочастотного процессора Intel Xeon E3-1285 v4. Тут интересно отметить, тесты на основе приложений Adobe Illustrator CC 2014.1.1 и Adobe Audition CC 2014.2 в меньшей степени (в сравнении с другими приложениями) загружают ядра процессора.



И конечно же, есть тесты, в которых процессоры Intel Xeon E3-1285 v4 и Intel Core i7-4790K демонстрируют одинаковую производительность. Например, это тест на основе приложения WinRAR 5.11.


Вообще, нужно отметить, что процессор Intel Core i7-4790K демонстрирует более высокую производительность (в сравнении с процессором Intel Xeon E3-1285 v4) именно в тех приложениях, в которых задействуются не все ядра процессора или загрузка ядер оказывается не полной. В то же время в тестах, где загружены на 100% все ядра процессора, лидерство на стороне процессора Intel Xeon E3-1285 v4.

Расчеты в приложении Dassault SolidWorks 2014 SP3 (Flow Simulation)

Тест на основе приложения Dassault SolidWorks 2014 SP3 с дополнительным пакетом Flow Simulation мы вынесли отдельно, поскольку в этом тесте не используется референсная система, как в тестах бенчмарка iXBT Application Benchmark 2015.

Напомним, что в данном тесте речь идет о гидро/аэродинамических и тепловых расчетах. Всего рассчитывается шесть различных моделей, а результатами каждого подтеста является время расчета в секундах.

Подробные результаты тестирования представлены в таблице.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
conjugate heat transfer, секунды 353.7 402.0 382.3 328.7 415.7
textile machine, секунды 399.3 449.3 441.0 415.0 510.0
rotating impeller, секунды 247.0 278.7 271.3 246.3 318.7
cpu cooler, секунды 710.3 795.3 784.7 678.7 814.3
halogen floodlight, секунды 322.3 373.3 352.7 331.3 366.3
electronic components, секунды 510.0 583.7 559.3 448.7 602.0
Суммарное время расчета, секунды 2542,7 2882,3 2791,3 2448,7 3027,0

Кроме того, мы также приводим нормированный результат скорости расчета (величина, обратная суммарному времени расчета). За референсный принимается результат процессора Core i7-4790K.

Как видно по результатам тестирования, в этих специфических расчетах лидерство на стороне процессоров Broadwell. Все четыре процессора Broadwell демонстрируют более высокую скорость расчета в сравнении с процессором Core i7-4790K. По всей видимости, в этих специфических расчетах сказываются те улучшения исполнительных блоков, которые были реализованы в микроархитектуре Broadwell.

SPECapc for 3ds max 2015

Далее рассмотрим результаты теста SPECapc for 3ds max 2015 для приложения Autodesk 3ds max 2015 SP1. Подробные результаты этого теста представлены в таблице, а нормированные результаты для CPU Composite Score и GPU Composite Score - на диаграммах. За референсный принимается результат процессора Core i7-4790K.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
CPU Composite Score 4,52 3,97 4,09 4,51 4,54
GPU Composite Score 2,36 2,16 2,35 2,37 1,39
Large Model Composite Score 1,75 1,59 1,68 1,73 1,21
Large Model CPU 2,62 2,32 2,50 2,56 2,79
Large Model GPU 1,17 1,08 1,13 1,17 0,52
Interacive Graphics 2,45 2,22 2,49 2,46 1,61
Advanced Visual Styles 2,29 2,08 2,23 2,25 1,19
Modeling 1,96 1,80 1,94 1,98 1,12
CPU Computing 3,38 3,04 3,15 3,37 3,35
CPU Rendering 5,99 5,18 5,29 6,01 5,99
GPU Rendering 3,13 2,86 3,07 3,16 1,74

В тесте SPECapc 3ds for max 2015 лидируют процессоры Broadwell. Причем, если в подтестах, зависящих от производительности CPU (CPU Composite Score), процессоры Core i7-4790K и Xeon E3-1285 v4 демонстрируют равную производительность, то в подтестах, зависящих от производительности графического ядра (GPU Composite Score), все процессоры Broadwell существенно опережают процессор Core i7-4790K.


SPECapc for Maya 2012

Теперь посмотрим на результат еще одного теста трехмерного моделирования - SPECapc for Maya 2012. Напомним, что данный бенчмарк запускался в паре с пакетом Autodesk Maya 2015.

Результаты этого теста представлены в таблице, а нормированные результаты - на диаграммах. За референсный принимается результат процессора Core i7-4790K.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
GFX Score 1,96 1,75 1,87 1,91 1,67
CPU Score 5,47 4,79 4,76 5,41 5,35

В этом тесте процессор Xeon E3-1285 v4 демонстрирует немного более высокую производительность в сравнении с процессором Core i7-4790K, однако, разница не столь существенна, как в пакете SPECapc 3ds for max 2015.


POV-Ray 3.7

В тесте POV-Ray 3.7 (рендеринг трехмерной модели) лидером является процессор Core i7-4790K. В данном случае более высокая тактовая частота (при равном количестве ядер) дает преимущество процессору.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
Render average, PPS 1568,18 1348,81 1396,3 1560.6 1754,48

Cinebench R15

В бенчмарке Cinebench R15 результат оказался неоднозначным. В тесте OpenGL все процессоры Broadwell существенно превосходят процессор Core i7-4790K, что естественно, поскольку в них интегрировано более производительное графическое ядро. А вот в процессорном тесте, наоборот, более производительным оказывается процессор Core i7-4790K.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
OpenGL, fps 71,88 66,4 72,57 73 33,5
CPU, cb 774 667 572 771 850


SPECviewperf v.12.0.2

В тестах пакета SPECviewperf v.12.0.2 результаты определяются преимущественно производительностью графического ядра процессора и, кроме того, оптимизацией видеодрайвера к тем или иным приложениям. Поэтому, в этих тестах процессор Core i7-4790K существенно отстает от процессоров Broadwell.

Результаты тестирования представлены в таблице, а также в нормированном виде на диаграммах. За референсный принимается результат процессора Core i7-4790K.

Тест Xeon E3-1285 v4 Xeon E3-1265L v4 Core i5-5675C Core i7-5775C Core i7-4790K
catia-04 20,55 18,94 20,10 20,91 12,75
creo-01 16,56 15,52 15,33 15,55 9,53
energy-01 0,11 0,10 0,10 0,10 0,08
maya-04 19,47 18,31 19,87 20,32 2,83
medical-01 2,16 1,98 2,06 2,15 1,60
showcase-01 10,46 9,96 10,17 10,39 5,64
snx-02 12,72 11,92 3,51 3,55 3,71
sw-03 31,32 28,47 28,93 29,60 22,63

2,36 Blender 2,43 2,11 1,82 2,38 2,59 HandBrake 2,33 2,01 1,87 2,22 2,56 LuxRender 2,63 2,24 1,97 2,62 2,86 IOMeter 15,9 15,98 16,07 15,87 16,06 Maya 1,73 1,63 1,71 1,68 0,24 Product Development 3,08 2,73 2,6 2,44 2,49 Rodinia 3,2 2,8 2,54 1,86 2,41 CalculiX 1,77 1,27 1,49 1,76 1,97 WPCcfg 2,15 2,01 1,98 1,63 1,72 IOmeter 20,97 20,84 20,91 20,89 21,13 catia-04 1,31 1,21 1,28 1,32 0,81 showcase-01 1,02 0,97 0,99 1,00 0,55 snx-02 0,69 0,65 0,19 0,19 0,2 sw-03 1,51 1,36 1,38 1,4 1,08 Life Sciences 2,73 2,49 2,39 2,61 2,44 Lammps 2,52 2,31 2,08 2,54 2,29 namd 2,47 2,14 2,1 2,46 2,63 Rodinia 2,89 2,51 2,23 2,37 2,3 Medical-01 0,73 0,67 0,69 0,72 0,54 IOMeter 11,59 11,51 11,49 11,45 11,5 Financial Services 2,42 2,08 1,95 2,42 2,59 Monte Carlo 2,55 2,20 2,21 2,55 2,63 Black Scholes 2,57 2,21 1,62 2,56 2,68 Binomial 2,12 1,83 1,97 2,12 2,44 Energy 2,72 2,46 2,18 2,62 2,72 FFTW 1,8 1,72 1,52 1,83 2,0 Convolution 2,97 2,56 1,35 2,98 3,5 Energy-01 0,81 0,77 0,78 0,81 0,6 srmp 3,2 2,83 2,49 3,15 2,87 Kirchhoff Migration 3,58 3,07 3,12 3,54 3,54 Poisson 1,79 1,52 1,56 1,41 2,12 IOMeter 12,26 12,24 12,22 12,27 12,25 General Operation 3,85 3,6 3,53 3,83 4,27 7Zip 2,48 2,18 1,96 2,46 2,58 Python 1,58 1,59 1,48 1,64 2,06 Octave 1,51 1,31 1,44 1,44 1,68 IOMeter 37,21 36,95 37,2 37,03 37,4

Нельзя сказать, что в этом тесте все однозначно. В некоторых сценариях (Media and Entertaiment, Product Development, Life Sciences) более высокий результат демонстрируют процессоры Broadwell. Есть сценарии (Financial Services, Energy, General Operation), где преимущество на стороне процессора Core i7-4790K либо результаты примерно одинаковые.






Игровые тесты

И в заключение рассмотрим результаты тестирования процессоров в игровых тестах. Напомним, что для тестирования мы использовали следующие игры и игровые бенчмарки:

  • Aliens vs Predator
  • World of Tanks 0.9.5
  • Grid 2
  • Metro: LL Redux
  • Metro: 2033 Redux
  • Hitman: Absolution
  • Thief
  • Tomb Raider
  • Sleeping Dogs
  • Sniper Elite V2

Тестирование проводилось при разрешении экрана 1920×1080 и в двух режимах настройки: на максимальное и минимальное качество. Результаты тестирования представлены на диаграммах. В данном случае результаты не нормируются.

В игровых тестах результаты таковы: все процессоры Broadwell демонстрируют очень близкие результаты, что естественно, поскольку в них используется одно и то же графическое ядро Broadwell GT3e. И самое главное, что при настройках на минимальное качество процессоры Broadwell позволяют комфортно играть (при FPS более 40) в большинство игр (при разрешении 1920×1080).

С другой стороны, если в системе используется дискретная графическая карта, то особого смысла в новых процессорах Broadwell просто нет. То есть нет смысла менять Haswell на Broadwell. Да и цена у Broadwell-ов не так, что бы очень привлекательная. К примеру, Intel Core i7-5775C стоит дороже Intel Core i7-4790K.

Впрочем, Intel, похоже, и не делает ставки на настольные процессоры Broadwell. Ассортимент моделей крайне скромный, да и на подходе процессоры Skylake, так что вряд ли процессоры Intel Core i7-5775C и Core i5-5675С будут пользоваться особым спросом.

Серверные процессоры семейства Xeon E3-1200 v4 - это отдельный сегмент рынка. Для большинства обычных домашних пользователей такие процессоры не представляют интереса, а вот в корпоративном секторе рынка эти процессоры, возможно, и будут пользоваться спросом.

Компания Intel в скором будущем начнёт поставки нового семейства процессоров для ноутбуков. Процессоры под кодовым названием Kaby Lake 7-го поколение представляют особый интерес для тех, кто готовится в ближайшем будущем сменить платформу на более производительную. Любители видеокодирования заметят существенную разницу в выигрыше от нового процессора. Киноманы при просмотре видео с высоченным битрейтом по настоящему останутся довольны. Игроманы смогут наслаждаться видеоиграми прямо на ноутбуках. Всё это вполне достижимо с процессорами Intel 7-го поколения.

В этом месяце конференция Intel Developer Forum дала почувствовать вкус всех прелестей процессоров 7-го поколения. На форуме во время демонстрации ноутбук Dell XPS 13 был в состоянии выдерживать супер графику в тяжелых видеоиграх, используя стандартную интегрированную графику Intel на новой платформе. Это просто потрясающие достижение.

Таким образом прошедший 30 августа 2016 года анонсный дебют компании Intel наглядно продемонстрировал нам, насколько эти процессоры будут производительнее всего процессорного рынка, существующего сейчас.

Вот что стало известно после состоявшегося форума о многоядерных процессорах Intel 7-го поколения:

100 проектов до конца года

На своем форуме разработчиков Intel объявила о том, что вся линейка процессоров 7-го поколения уже доступны ведущим производителям компьютерной индустрии и партнерам Intel, что означает выпуск очень многообещающих ноутбуков на базе новых процессоров до конца года. Крис Уокер - генеральный менеджер компании Intel для мобильных клиентских платформ, поведал, что новые процессоры в диапазоне энергопотребления от 4,5 Ватт до 15 Ватт будут первыми, которые появятся в ноутбуках, а именно в ультратонких ноутбуках. Как уже сообщалось ранее, когда только появилась информация о процессорах 7-го поколения , уже ведется работа над 100 проектами с участием процессоров 7-го поколения, которые будут доступны в четвертом квартале 2016 года.

Новое семейство процессоров будет расширяться на другие рынки, но уже в следующем году. Так в частности в январе ожидается появление процессоров Intel 7-го поколения в рабочих станциях, игровых системах и виртуальной реальности.

Чипы имеют знакомую архитектуру

Intel построили 7-е поколение процессоров на той же архитектуре Skylake, что и процессоры 6-го поколения, представленные в прошлом году. Так что Intel не произвёл революцию, изобретая новую архитектуру.Skylake просто была немного доработана до идеала.

В частности, Intel сообщил, что улучшили напряжение транзисторов на процессорах. В результате получается, что микроархитектура стала более энергоэффективной и поэтому процессоры 7-го поколения могут предложить прирост производительности по сравнению с предыдущими поколениями процессоров Intel.

Ядра m5 и m7 уходят

Intel вносит изменения в обозначения маломощных чипов, устраняя 4,5 Ваттные процессоры Core m5 и m7 и превращая их в Core i5 и Core i7. Компания надеется, что это изменение поможет потребителям, многие из которых не понимают разницу между Core i5 и Core m5. Однако, 4,5-ваттные процессоры, также известные как чипы серии Kaby Lake , с буквой Y аналогичны по мощности. Если Вы видите Y в конце SKU, то это один из чипов ранее известных как ядра m5 или m7.

Что еще более интересно, что Intel не изменит марку ядра для его начального уровня процессоров Core m3, который является самым медленным и наименее дорогим из линейки m . Таким образом, в порядке производительности, чипы4,5-ватт называются Core m3, Core i5 Y серии и Core i7 серии Y.

Прирост производительности

Вам, вероятно, не стоит выбрасывать свой процессор 6-го поколения, если Вы сделали апгрейд в этом году или в прошлой зимой. Skylake однозначно не стоит менять в пользу одного из процессоров 7-го поколения аналогичной линейки. Замена оправдана только повышением индекса процессора. Но Intel говорит, что если Вы решитесь на замену, то получите ощутимый прирост производительности. Используя тестовый пакет SYSmark для измерения производительности, Intel представили компьютер с процессором 7-го поколения Core i7-7500U, который показал прирост производительности на 12 процентов больше, чем процессор 6-го поколения Core i7-6500U. Тестирование WebXPRT 2015 показало 19-процентное повышение производительности.


Не думаю, что даже 19-процентное преимущество подстегнёт покупателей менять свой не такой уж и старый и добрый Skylake на Kaby Lake. Очевидно, что увеличение производительности выглядит более существенным, когда в сравнение идут процессоры 5-го, 4-го поколений, на замену которых Intel и делает ставку по обновлению процессоров. Новый Core ​​i5-7200U в 1.7 раз производительнее своего пятилетнего собрата Core i5-2467M в SYSmark. На тесте 3DMark новый процессор в три раза оказался быстрее пятилетнего процессора.

Представители Intel сообщили, что 7-е поколение центральных процессоров сможет играть в требовательных играх на средних настройках в разрешении 720p со встроенной графикой или при 4К с совместимым графическим усилителем.

Эти чипы предназначены для видео

Intel приняла уведомление о все 4K и 360 градусов видео мы потребляющего. В ответ на это производитель чипов представил новый видео движок для своих 7-Gen процессоров ядро, которое стремится обрабатывать любые требования содержания вы можете бросить на нее.

Новые чипы поддерживают аппаратное декодирование HEVC 10-битного профиля цветности, которое позволить Вам играть на 4K и UltraHD видео без каких-либо тормозов. Intel также добавила возможность декодирования VP9 для ядер 7-го поколения, чтобы повысить эффективность работы, когда Вы смотрите 4K видео и в то же время выполняете другие задачи.

Ядра 7-го поколения также смогут производить операции видеоконвертации намного быстрее других процессоров. Например, по данным Intel Вы сможете перекодировать 1 час 4K видео всего за 12 минут.


Больше энергоэффективности

С точки зрения повышения энергоэффективности батареи для ноутбуков представители Intel сообщили, что ноутбук с процессором 7-го поколения может работать в течение 7 часов при потоковой передаче 4K или 4K 360 градусов YouTube видео. По сравнению с ядрами 6-го поколения преимущество в работе составит в среднем 4 часа в пользу седьмого поколения. Что касается 4K потокового видео Intel обещает работоспособность в течение всего дня, что составляет 9 с половиной часов.

7-е поколения предлагает ряд других функций

Процессоры 7-го поколения предлагают несколько других функций, направленных на то, чтобы Ваши ноутбуки работали более эффективно. Например, Intel технология Turbo Boost 2.0. Это функция, которая управляет производительностью процессора и его мощностью, вроде автоматического разгона процессора, когда тактовая частота ЦП превышает номинальные показатели производительности.

Технология Hyper-Threading помогает процессору выполнять задачи быстрее, обеспечивая два потока обработки для каждого из ядер.


7-е поколение процессоров также включают в себя технологию Speed ​​Shift , которая должна сделать более быстрыми выполняемые приложения. Эта технология позволяет процессору более реагировать на запросы приложений об увеличении или уменьшении частоты для обеспечения наилучших показателей, тем самым оптимизируя производительность и эффективность. Это особенно эффективно, когда приложениям требуются очень короткие всплески активности, такие как просмотр веб-страниц или ретуширование фотографий многочисленными мазками кисточек в графическом редакторе.

При выборе процессора от компании Intel встает вопрос: а какой чип от этой корпорации выбрать? У процессоров есть множество характеристик и параметров, которые влияют на их производительность. И в соответствии с ней и некоторыми особенностями микроархитектуры производитель дает соответствующее название. Нашей задачей является освещение этого вопроса. В этой статье вы узнаете, что именно означают названия процессоров Intel, а также узнаете про микроархитектуры чипов от этой компании.

Указание

Надо заранее отметить, что здесь не будут рассматриваться решения раньше 2012 года, так как технологии идут быстрыми темпами и эти чипы имеют слишком малую производительность при большом энергопотреблении, а также их трудно купить в новом состоянии. Также здесь не будут рассмотрены серверные решения, так как они имеют специфичную сферу применения и не предназначены для потребительского рынка.

Внимание номенклатура изложенная ниже может оказаться недействительной для процессоров старее, чем обозначенный выше срок.

А также при возникновении трудностей можете посетить сайт . И прочесть вот эту статью, где рассказано про . А если хотите узнать про интегрированную графику от Intel, то вам .

Тик-Так

У Intel особая стратегия выпуска своих «камней», называющаяся Тик-Так (Tick-Tock). Она заключается в ежегодных последовательных улучшениях.

  • Тик означает смену микроархитектуры, которая ведет к смене сокета, улучшению производительности и оптимизации энергопотребления.
  • Так означает , что ведет к уменьшению энергопотребления, возможности расположения большего числа транзисторов на чипе, возможному поднятию частот и увеличению стоимости.

Вот так выглядит данная стратегия у десктопных и ноутбучных моделей:

МОДЕЛЬ «ТИК-ТАК» У ДЕСКТОПНЫХ ПРОЦЕССОРОВ
МИКРОАРХИТЕКРУРА ЭТАП ВЫХОД ТЕХПРОЦЕСС
Nehalem Так 2009 45 нм
Westmere Тик 2010 32 нм
Sandy Bridge Так 2011 32 нм
Ivy Bridge Тик 2012 22 нм
Haswell Так 2013 22 нм
Broadwell Тик 2014 14 нм
Skylake Так 2015 14 нм
Kaby Lake Так+ 2016 14 нм

А вот у маломощных решений (смартфоны, планшеты, нетбуки, неттопы) платформы выглядят следующим образом:

МИКРОАРХИТЕКТУРЫ МОБИЛЬНЫЙ ПРОЦЕССОРОВ
КАТЕГОРИЯ ПЛАТФОРМА ЯДРО ТЕХПРОЦЕСС
Нетбуки/Неттопы/Ноутбуки Braswell Airmont 14 нм
Bay Trail-D/M Silvermont 22 нм
Топовые планшеты Willow Trail Goldmont 14 нм
Cherry Trail Airmont 14 нм
Bay Tral-T Silvermont 22 нм
Clower Trail Satwell 32 нм
Топовые/средние смартфоны/планшеты Morganfield Goldmont 14 нм
Moorefield Silvermont 22 нм
Merrifield Silvermont 22 нм
Clower Trail+ Satwell 32 нм
Medfield Satwell 32 нм
Средние/бюджетные смартфоны/планшеты Binghamton Airmont 14 нм
Riverton Airmont 14 нм
Slayton Silvermont 22 нм

Надо отметить, что Bay Trail-D сделана для десктопов: Pentium и Celeron с индексом J. А Bay Trail-M для – это мобильное решение и также будет обозначаться среди Pentium и Celeron своей буквой – N.

Судя по последним тенденциям компании, сама производительность прогрессирует достаточно медленно, в то время как энергоэффективность (производительность на единицу потребленной энергии) растет год от года, того и гляди скоро в ноутбуках будут такие же мощные процессоры, как и на больших ПК (хотя такие представители есть и сейчас).

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.