Устройство и работа радиостанции «Фазан-Р2. Россия. Новые технологии. Фото каталог. Продажа продукции от производителя

Радиостанция, комплекс устройств для передачи информации посредством радиоволн и (или) её приёма. В зависимости от назначения различают передающие (например, в составе передающего радиоцентра), приёмные (см. Приёмный радиоцентр) и приёмо-передающие радиостанции. Основными устройствами передающей Р. являются радиопередатчик, антенна,соединяющий их фидер и источники электропитания; основными устройствами приёмной Р. - радиоприёмник, антенна, фидер и источники электропитания. Кроме того, в состав передающей Р. могут входить устройства для воспроизведения с некоторого носителя (например, магнитной ленты) информации, подлежащей передаче, а в состав приёмной - устройства, регистрирующие принимаемые сигналы или преобразующие их в звук либо в световое изображение. Р. классифицируют также по роду радиослужб (см. Радиосвязь),в которых они действуют (постоянно или временно): Р. фиксированной службы связи (связи между определёнными пунктами); Р. подвижной службы связи (между подвижными и неподвижными объектами или между несколькими подвижными объектами); вещательные; радионавигационные и т.д.

Вас также могут заинтересовать

"Радиостанция, комплекс устройств для передачи информации посредством радиоволн и (или) её приёма. В зависимости от назначения различают передающие (например, в составе передающего радиоцентра), приём

Волосы для кукол "Кудряши в хвостиках с челкой" размер большой, цвет Р2

Волосы для кукол "Прямые" размер большой, цвет Р2

Выберите причёску для куколки, которую вы сделали собственными руками, или обновите стиль старой подружке. Шелковистые локоны украсят любую голову - главное, прикрепить их покрепче. Теперь игрушечная

Чехол для радиостанции Моторола" средний (кожа)

МатериалНатуральная кожаРазмер упаковки11 см × 6,5 см × 3,5 смВид упаковкиБез упаковкиСертификацияНе подлежит сертификацииОстаток на складе2Вес39 гНазначениеДля радиостанции

ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ РАДИОПРИЕМНИКА

Чувствительность простого радиоприемника можно существенно повысить при помощи нескольких способов. Рассмотрим три из них:

Казалось бы - чего проще - добавляй дополнительные каскады усиления... Но на практике простое добавление усилительных каскадов приводит к нестабильной работе усилителя. Чрезмерное усиление приводит к возбуждению усилителя. Практически признано нецелесообразным использование более трех каскадов усиления как в усилителях радиочастоты, так и в низкочастотных усилителях. Можно вывести режим транзистора в диапазон максимального усиления, но такой режим характеризуется сильной зависимостью параметров от уровня входного сигнала, то есть такой усилитель буде неплохо усиливать слабый сигнал, но при увеличении его до некоторого уровня транзистор начнет работать с отсечкой коллекторного тока. Работа транзистора в режиме отсечки приведет к возникновению значительных искажений. На практике, режим транзистора устанавливается на участке с линейной характеристикой усиления (коллекторный ток транзистора выбирается в режиме молчания на уровне 0,5-1 миллиампера), то есть от каскада трудно получить усиление выше 35-40. Двухкаскадный усилитель, таким образом, будет иметь максимальное усиление не более 1600. Использование такого усилителя в простом радиоприемнике не позволит добиться высокой чувствительности приемника в целом. Приблизительно, чувствительность такого радиоприемника (по полю) будет равна 10-15 милливольт на метр. Учитывая низкую эффективность магнитной антенны, такой приемник позволит принимать только мощные радиостанции, удаленные от места приема не более, чем на 150-200 километорв (это замечане справедливо при постройке радиоприемника на длинно или средне волновый диапазоны).

Для увеличения чувствительности радиоприемника в целом можно применить более тщательное согласование всех его каскадов. Один из таких приемов - применение на входе УРЧ Истокового повторителя на полевом транзисторе:

Сам по себе истоковый повторитель не усиливает сигнал (коэффициент усиления - всегда меньше еденицы), но он повышает входное сопротивление УРЧ до нескольких сотен килоом. Как известно, каскад на биполярном транзисторе обладает невысоким входным сопротивлением (до едениц килоом). Если на вход такого усилителя включить колебательный контур - каскад сильно зашунтирует контур, что скажется на его добротности (а, значит - и эффективности!). От добротности контура зависит как чувствительность, так и избирательность (способность принимать только одну радиостанцию) приемника в целом. При низкой добротности резонанс колебательного контура при настройке на работающую радиостанцию будет "расплывчатым". Эта "расплывчатость" приведет к снижению наводимого в контуре напряжения, также при наличии в месте приема нескольких радиостанций - их сигналы будут проникать на вход УРЧ одновременно, что сделает практически невозможным прием радиопередачи какой либо конкретной радиостанции. Для согласования такого каскада с контуром магнитной антенны приходится использовать катушку связи, которая содержит, как правило, в 6-10 раз меньшее количество витков, чем контурная. Применение катушки связи пропорционально уменьшает уровень входного сигнала на входе УРЧ. При использовании на входе усилителя истокового повторителя необходимость в катушке связи отпадает и теперь на вход усилителя поступает уже весь сигнал, наведенный в контуре магнитной антенны принимаемой радиостанцией. На практике применение истокового повторителя реально повышает чувствительность радиоприемника в 5-6 раз, что эквивалентно увеличению дальности приема радиостанций.

Если вы испытывете затруднения в приобретении полевого транзистора - можно повысить чувствительность радиоприемника применением эмиттерного повторителя но уже на выходе УРЧ:

Эмиттерный повторитель, так же, как и истоковый, имеет усиление по напряжению меньше еденицы. В данной схеме повышение чувствительности достигнуто применением на выходе усилителя автотрансформатора L1. Автотрансформатор наматывается на ферритовом кольце типоразмеров К8-К10 (наружный диаметр) и содержит 50+250 витков, провода ПЭВ-0,1. Дальнейшему увеличению усиления способствует применение для детектирования сигнала схемы с удвоением напряжения на диодах VD1,VD2. Реально данная схема увеличивает чувствительность радиоприемника в 3-4 раза.

Коэффициент передачи диодного детектора при однополупериодном выпрямлении обычно равен 0,3-0,5. Детектор с удвоением напряжения имеет коэффициент передачи в 1,4 раза больше, чем однополупериодный. Остальное напряжение бесцельно теряется на переходах диодов. Третий из рассматриваемых нами способов повышения чувствительности приемника - это применение так называемого транзисторного детектора. Детектор на транзисторе дополнительно усиливает низкочастотное полезное напряжение радиопередачи. Коэффициент усиления детектора на транзисторе может достигать 80-100, что эквивалентно общему повышению усиления радиоприемника. Такое повышение может служить поводом для возбуждения усилителя, поэтому в данном случае желательно использовать систему Автоматической Регулировки Усиления (сокращенно - АРУ). Суть АРУ заключается в автоматическом снижении усиления усилителя при высоком уровне входного сигнала.

Практическая схема транзисторного детектора приведена ниже:

Транзистор работает на нелинейном участке характеристики. Рабочий режим транзистора задается при помощи диода. При увеличении входного сигнала напряжение на коллекторе пропорционально уменьшается. Это напряжение можно использовать для установки рабочих точек транзисторов усилителя РЧ. Напряжение АРУ подается на базы транзисторов УРЧ через простейшие развязывающие RC цепочки. Для большинства случаев бывает достаточно применить АРУ только в первом (входном) каскаде УРЧ.

Примерная схема фильтра приведена ниже:

Номинал резисторов R1 и R2 зависит от необходимого уровня смещения на базу транзистора и подбирается к конкретному экземпляру. Емкость конденсатора может колебаться от 0,033 до 0,1 микрофарады.


Набор инструментов "Zipower", 216 предметов. PM 4112

Набор инструментов "Zipower" - достойный выбор для автомастерских, автомобилистов и любителей проводить свободное время, изучая свой автомобиль и устраняя неисправности. В комплекте: шестигранные торцевые головки, удлинители, отверточные биты, комбинированные гаечные ключи, угловые ключи, адаптер-переходник, трещотка с быстрым сбросом.
Тщательно подобранный ассортимент инструмента удовлетворит запросы и начинающего автовладельца, и профессионального механика.
Применение специальной технологии закалки и термической обработки хромованадиевой стали гарантирует высокую прочность инструмента, его износоустойчивость при интенсивном использовании. Двухкомпонентные рукоятки обеспечивают комфорт во время выполнения работ.
Количество предметов: 216 шт.
Материал инструмента: Cr-V.

9900 руб


Набор магнитных инструментов Forceberg предназначен для мастеров на все руки. Они способны упростить покрасочные работы, решить задачу по хранению шурупов, гвоздей и т.п. В набор входит: 1. Держатель для инструментов в виде магнитной планки, длина - 450 мм; 2. Держатель-напульсник для крепежа; 3. Магнитный поддон для мелких металлических деталей, диаметр - 105 мм.Среди преимуществ продукции: качественное фабричное производство (Китай); современная комплектация (магнитные держатели настольные и навесные для закрепления над рабочим местом, напульсники); эргономичное исполнение.

1713 руб


Набор быстрозажимных струбцин "FIT" состоит из 3 штук разного размера: 75 мм, 100 мм и 150 мм. Продукция "FIT" отличается долговечностью и стойкостью к высоким нагрузкам, сложным погодным условиям. Характеристики:

  • Материал: пластик, сталь.
  • Длина большой струбцины: 15,5 см.
  • Длина средней струбцины: 11,5 см.
  • Длина малой струбцины: 8,5 см.
  • Размер упаковки: 15,5 см x 3 см x 30,5 см.

311 руб


Степлер мебельный "Gross", для скоб 6-16 мм. 41002

Мебельный степлер "Gross" применяется для забивания листов материала к дереву или ДСП. Изделие изготовлено из прочного алюминиевого сплава, что гарантирует долгий срок службы. Имеется регулировка силы удара для работы с твердыми материалами. Эргономичная форма рукоятки позволяет придать руке оптимальное положение, что снижает усталость и травматизм. Загрузка скоб производится снизу, что ускоряет процесс установки и облегчает устранение заклинивших скоб. Имеется окно для контроля расходных материалов. Благодаря конструкции и весу при срабатывании степлера не возникает отдачи. Для удобства хранения и во избежание самопроизвольного срабатывания предусмотрен механизм фиксации ручки. Подходит для профессионального использования.

Для скоб: №13 (6-13 мм); №53 (6-16 мм).
Для гвоздей 16 мм.

Разработка и обоснование принципиальной схемы передающего устройства Расчет элементов и узлов принципиальной схемы ВЧ генератора Расчет элементов и узлов принципиальной схемы усилителя высокой частоты УВЧ1 Расчет элементов и узлов принципиальной схемы предварительного усилителя усилителя низкой частоты и усилителя высокой частоты УВЧ2 Расчет элементов и узлов принципиальной схемы оконечного усилителя мощности


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

11949. Разработка быстродействующих p-i-n фотодиоды на основе узкозонных гетероструктур полупроводников А3В5 для среднего ИК-диапазона 17.61 KB
Краткое описание разработки: Разработаны быстродействующие фотодиоды до 25 МГц для спектрального диапазона 1624 мкм на основе твердых растворов GInsSb lGsSb а также длинноволновые фотодиоды на основе Ins InsSbP для важного ИК диапазона 25 мкм второе атмосферное окно работающие при комнатной температуре. В настоявшие время фотодиоды для средней ИК области спектра выпускает фирмами Hmmtsu Япония и Epitxx США. Такие фотодиоды важны для создания портативных оптических анализаторов которые используются для экологического...
19431. Методика подготовки программ для массовой аудитории на специализированных экономических радиостанциях (на примере Интернет-радиостанции BrocoPulse) 141.88 KB
Мужские журналы также не отставали, помещая на обложку заголовки типа «Мы поднимем твой Доу Джонс!»2. Таким образом, слово «кризис» довольно быстро стало модным, а экономические термины прочно вошли в обиход. Однако о том, что же они означают, многие даже и не задумываются.
11907. Компактный малогабаритный спектрометр терагерцового диапазона частот на основе устройств твердотельной электроники 34.08 KB
Разработаны спектрометр на эффекте свободно затухающей поляризации в области частот 5003000 ГГц и синтезаторы частот на диапазоны 667  857 ГГц 789968 ГГц 8821100 ГГц с кварцевой стабильностью частоты использующие в качестве умножителей и гармонических смесителей полупроводниковые сверхрешетки.
11937. Топология интегральной микросхемы «Монолитный интегральный ультраширокополосный усилитель мощности диапазона 0,01 – 4 ГГц на гетероструктурах AlGaN/GaN» 17.72 KB
ИМС монолитного интегрального усилителя мощности предназначена для использования в выходных трактах приемопередающих устройств различного назначения. ИМС монолитного интегрального усилителя на наногетероструктурах нитрида галлия с размером кристалла 1,330х1,330 мм2 имеет в рабочей полосе частот усиление свыше 20 дБ и выходную мощность 3 Вт на частоте 1 ГГц.
11932. 17.7 KB
Созданный метод электромагнитного картирования в высоких широтах с использованием разработанного мощного контролируемого источника экстремально низкочастотного диапазона включающий в себя методики решения прямых задач рекомендации к проведению экспериментов и современные методы интерпретации результатов таких экспериментов представляется особенно актуальным для исследования перспективных но в то же время труднодоступных для изучения высокоширотных регионов. Решение проблемы электромагнитного картирования в высоких широтах с использованием...
11912. Технология роста кристаллов сульфатов переходных металлов и создание на их основе оптических фильтров УФ-диапазона для приборов солнечно-слепой технологии 18.06 KB
Созданные новые кристаллические материалы с заданными свойствами для фильтрации излучения сульфаты переходных металлов составляют инновационный потенциал нового класса активнопассивных приборов фотоники интеллектуальных монофотонных приборов в которых информационный обмен осуществляется на уровне отдельных фотонов или сгустков из их небольшого числа. МФТ нашли свое применение в космических и авиационных оптикоэлектронных интеллектуальных системах в том числе УФ диапазона на базе которых созданы инновационные продукты для перспективных...
3612. Разработка проекта мультисервисной сети, выбор технологии сети, разработка ее структуры, установка оборудования и расчет его комплектации 6.93 MB
В данном дипломном проекте решена задача построения мультисервисной сети широкополосной передачи данных для предоставления услуги Triple Play, на основе технологии FTTB. Проведен анализ исходных данных. Предложено обоснование выбранной технологии и топологии сети, проведен расчет оборудования а также подбор его комплектации, расчет нагрузки на сеть, приведены технико-экономические показатели, разработаны мероприятия по безопасности жизнедеятельности.
4628. Разработка GSM сигнализации 706.93 KB
Принципиальная схема сигнализации. Сигнал от сработавшего датчика охранной или пожарной сигнализации с помощью сотовой связи отправляется на запрограммированный номер. В качестве основного исполнительного модуля сигнализации GSM используется 32 битный микроконтроллер...
1461. Разработка веб-браузера «Гамбит» 1.77 MB
Borland C++ Builder является средой быстрой разработки приложений. В основе систем быстрой разработки (RAD-систем, Rapid Application Development – среда быстрой paзpa6oтки приложений) лежит технология визуального проектирования и событийного программирования, суть которой заключается в том
11032. Разработка стратегии ООО «ТриэС» 40.67 KB
Стратегия - это детальный, всесторонний, комплексный план, который разрабатывается высшим руководством, а реализуется всеми уровнями управления. Стратегия разрабатывается с точки зрения развития всего предприятия на основе исследований и фактических данных.

Основным устройством, входящим в состав каждого радиосредства серии «Фазан», является приемопередатчик. Самым сложным из всех радиосредств серии «Фазан» является «Фазан-Р2», остальные радиосредства являются её частным случаем, поэтому принцип действия приемопередатчика и взаимодействие его составных частей описывается на примере приемопередатчика базовой станции «Фазан-Р2». Затем описываются отличия остальных радиосредств серии от базовой радиостанции.

Входной сигнал с антенны через ВЧ-реле поступает на радиоприемное устройство (блок ПРМ), где происходит фильтрация и усиление ВЧ-сигнала, преобразование его в первую ПЧ, усиление и фильтрация сигнала первой ПЧ, преобразование в сигнал второй ПЧ, усиление и демодуляция.

Выходной сигнал блока ПРМ поступает в блок управления, где происходит его дальнейшая обработка (выбор полосы принимаемого сигнала 0,3 - 2,7 или 0,6 - 6,6 кГц, доведение сигнала до уровня, необходимого для подачи в головные телефоны и в аппаратуру АКДУ). Управление частотой настройки усилителя радиочастоты (УРЧ) блока ПРМ осуществляется по параллельной шине с блока управления. Запись информации о настройке УРЧ приёмника стробируется сигналом "Зап ПРМ".

Блок ПРМ осуществляет непрерывное самотестирование и принудительный контроль по запросу блока управления. Непрерывное тестирование основано на зависимости напряжения АРУ от уровня входного сигнала, проходящего по тракту приемника. Недостаточное усиление, в тракте ПЧ в результате выхода из строя транзисторов, микросхемы УПЧ и других элементов, приводит к снижению управляющего напряжения АРУ, формированию на выходе приёмника сигнала "Отказ ПЧ" и, как следствие, к индикации отказа ПРМ в блоке управления. Недостаточный уровень сигнала гетеродина, обусловленный снижением уровня выходного сигнала блока СЧ, обрывом ВЧ кабеля между блоками СЧ и ПРМ, выходом из строя элементов усилителя гетеродинного колебания, находящегося в блоке ПРМ, приводит к по­явлению сигнала отказа по цепи УГ приемника, что также отображается на индикаторе.

Принудительный контроль приемника охватывает весь тракт от входных цепей до выход­ного усилителя НЧ сигнала. Такой контроль осуществляется по запросу блока управления путем выбора режима «Тест» при местном управлении радиостанции или набором соответст­вующей команды от устройства, дистанционно управляющего радиостанцией по стыкам RS-232 или RS-485. При этом по команде «Контроль» на антенный вход приемника подключает­ся генератор шума, модулированный сигналом «Тест» частотой 400 Гц, формируемым бло­ком управления. После этого выходной НЧ сигнал приемника анализируется в блоке управ­ления, в результате чего принимается решение о исправности/неисправности блока ПРМ.

Кроме того, блок ПРМ формирует сигнал обнаружения несущей (СОН), необходимый для работы системы подавления шума (ПШ) блока управления.

Выбор шага сетки частот 25 или 8,33 кГц осуществляется заменой блоков ПРМ, в которых используются разные фильтры по промежуточной частоте, информация о типе установлен­ного блока ПРМ передается в блок управления логическим уровнем по цепи «Полоса ЛТ». При включении излучения блок управления запирает приемник по сигналу «Вкл изл 1 п» и через ВЧ реле подключает передающий тракт к антенне.

Формирование сигнала возбуждения для усилителя мощности и сигнала гетеродина при­емника происходит в блоке СЧ, выполненном по схеме фазовой автоподстройки частоты. Шаг сетки частот равен 4,1 (6) кГц, что позволяет использовать синтезатор во всех исполне­ниях радиостанций с шагом как 25 кГц так и 8,3 (3) кГц (в том числе в режиме со смещением несущей). Для улучшения шумовых свойств синтезатор-гетеродин выполнен в диапазонном варианте. Переключение диапазона осуществляется по сигналу «УГ» с блока управления. По сигналу «УВ» производится перевод работы синтезатора из режима приема в режим переда­чи и обратно. Настройка на рабочую частоту осуществляется в последовательном коде с бло­ка управления по сигналам «С»- синхронизация шины, «D» - передаваемые в синтезатор дан­ные, «Е-В» - сигнал записи информации в возбудитель, «Е-Г» - сигнал записи информации в гетеродин. По наличию синхронизации в кольце автоподстройки частоты делается вывод о исправности/неисправности синтезаторов (сигналы «Отказ В» и «Отказ Г»).

Тракт передачи радиостанции образован задающим генератором-возбудителем, усилите­лями мощности (блоки ПУ, УМФ, УМ), после чего выходной сигнал поступает через ВЧ ре­ле в антенну. В оконечном блоке УМ осуществляется амплитудная модуляция выходного сигнала под действием модулирующего НЧ сигнала, поступающего от блока управления.

В блок УМ конструктивно входит однокристальный датчик температуры, непрерывно контролирующий нагрев корпуса усилителя мощности и передающий информацию по шине I 2 С в блок управления. По достижению температуры корпуса УМ заданного порогового зна­чения блок управления включает прибор охлаждения и удерживает его в таком состоянии до достижения температуры корпуса УМ нижнего порога, после чего прибор охлаждения от­ключается.

Блок БПР осуществляет преобразование напряжения сети 220 В в напряжение постоянно­го тока 24 В, осуществляет коммутацию питающего напряжения «Сеть 220 В/аккумулятор». Наличие сетевого питающего напряжения 220 В, выходного напряжения 24 В, напряжения аккумулятора и дежурного источника индицируется на передней панели блока. Здесь же на­ходится тумблер включения радиостанции. Тумблер выбора режима управления подачи пи­тания (местный или дистанционный) конструктивно размещен на задней стенке приемопере­датчика.

Блок П формирует вторичные напряжения 27 В, 12 В, 5 В, минус 5 В, минус 12 В, необхо­димые для функционирования устройств, входящих в состав приемопередатчика.

Блок управления - устройство полностью определяющее функционирование радиостан­ции по заданному алгоритму работы. С клавиатуры в режиме местного управления осуществляется выбор рабочей частоты радиостанции, измерение основных параметров (на­пряжения физических линий, модулирующее напряжение, уровень падающей и отраженной волн, температуры корпуса блока УМ, уровня выходного сигнала приемника и т.д.), включе­ние или отключение подавителя шума, регулировка чувствительности модуляционного трак­та передатчика и уровня выходного сигнала приемника, выбор режима работы физических линий и т.д. Информация о текущем режиме работы сохраняется в энергонезависимом РПЗУ блока управления, что позволяет автоматически восстановить ранее записанную информа­цию после отключения и повторного включения питания радиостанции.

Для автоматического поддержания заданного коэффициента амплитудной модуляции при изменении уровня модулирующего сигнала, поступающего с линейного входа, в радио­средствах применена система автоматической регулировки усиления (АРУ).

Основу схемы составляет регулируемый аттенюатор на микросхеме FX019, коэффи­циент передачи которого регулируется путем подачи команд от микроконтроллера. Макси­мальный коэффициент регулирования составляет ±17 дБ.

Принцип действия системы АРУ состоит в поддержании уровня модулирующего сиг­нала (Uмодул) на входе блока УМ в заданных границах, которым соответствует определен­ная модуляция передатчика. Уровню модулирующего сигнала 0,5 В соответствует коэффи­циент модуляции 90 % (ориентировочное значение). С помощью регулировки НЧ ПРД при включенной АРУ уровень модулирующего сигнала может быть выставлен в диапазоне 0,35...0,5, что соответствует модуляции 60...95 % (типичное значение для качественного прослушивания речевого сигнала). Система АРУ поддерживает уровень модулирующего сигнала равным установленному регулировкой значению с допуском ±0,05 В. В случае пре­вышения или снижения уровня модулирующего сигнала микроконтроллер регулирует коэф­фициент передачи аттенюатора с целью приведения уровня модулирующего сигнала к за­данному значению.

В случае, когда на двухпроводной линии радиосредства отсутствует модулирующий сигнал, коэффициент передачи аттенюатора устанавливается в среднее положение (Кпер = О дБ).

По мере возрастания сигнала на входе уровень модуляции пропорционально возраста­ет. После превышения определенного порога, система АРУ принимает решение о достаточ­ности уровня входного сигнала (Uмодул - 50... 100 мВ) и поднимает усиление в тракте (Кпер = 0...17 дБ) до тех пор, пока уровень модулирующего сигнала на входе блока УМ не достигнет заданного значения (0,35...0,5 В). Этот уровень поддерживается при изменении сигнала на двухпроводной линии в пределах 0,2... 1,5 В (гарантированное значение, реально -больше). При этом коэффициент передачи принимает различное значение (от - 17 дБ до +17 дБ) в зависимости от уровня сигнала на двухпроводной линии. При уменьшении сигнала на двухпроводной линии радиосредства до уровня, при ко­тором модулирующее напряжение становится 50... 100 мВ, система АРУ принимает решение об уменьшении коэффициента передачи аттенюатора до значения Кпер - 0 дБ (резко спа­дающий участок регулировочной характеристики).

При появлении на двухпроводной линии сигнала достаточного уровня (речевой сиг­нал от диспетчера) процесс повторяется.

Управление радиосредствами возможно как в местном, так и в дистанционном режи­ме.

Местное управление подразумевает: установку с клавиатуры рабочей частоты радио­средства (в том числе сдвиг частоты); измерение текущих значений напряжения питания, температуры на радиаторе усилителя мощности и т.д.; регулировка уровней низкочастотных сигналов передатчика и приемника, включение/выключение АРУ; выбор режима работы дистанционного управления (2-х или 4-х проводный, телефония или данные, ретрансляция); вывод информации со счетчика времени наработки в часах; выбор скорости работы по сты­кам RS-232 и RS-485; задание адреса радиосредства для корректной работы в автоматизиро­ванной системе по стыку RS-485. В местном управлении сигналы с двухпроводной линии не поступает на модулятор, а сигнал с приемника не транслируется на двухпроводную линию радиосредства. Модуляция передатчика осуществляется от микрофонного усилителя, сигнал с приемника поступает на головные телефоны.

Дистанционное управление возможно: по двухпроводной линии; по стыку RS-232; по стыку RS-485. Все три способа дистанционного управления работают только при установке переключателя на блоке управления в положение ДИСТ.

В режиме дистанционного управления и контроля изменения в меню УСТАНОВКА ЧАСТОТЫ, СДВИГ ЧАСТОТЫ, РЕЖИМ, СКОРОСТЬ, ТЕСТ, АДРЕС не действуют.

Измерения текущих значений параметров возможны.

Такой алгоритм работы предотвращает случайное изменение важнейших установок радиосредства при работе с диспетчером. Модуляция от микрофонного усилителя в этом случае также запрещена.

Изменения НЧ-параметров НЧ ПРМ, НЧ ПРД, НЧ ДПМ, НЧ ДПД с передней панели блока управления при включенном дистанционном управлении возможны.

Дистанционное управление по физической линии подразумевает модуляцию передат­чика, трансляцию сигнала приемника в линию и включение режима излучения (передачи) по фантомной цепи (в среднюю точку симметрирующего трансформатора).

Дистанционное управление по стыкам RS-232 и RS-485 позволяет осуществлять управление и контроль радиосредством внешним устройством (компьютером) аналогично режиму местного управления. При этом внешнее устройство, подключенное к радиосредству через соответствующие разъемы приемопередатчика, должно взаимодействовать с радио­средством в полном соответствии с ПРОТОКОЛОМ, описание которого приведено в настоя­щем руководстве по эксплуатации. При этом внешнее устройство может включать радио­средство в режим излучения, изменять рабочую частоту, включать подавитель шума, полу­чать информацию о текущем состоянии радиосредства и т.д.

Все действия, осуществляемые оператором с клавиатуры или дистанционно по стыкам RS-232 или RS-485 отображаются на матричном индикаторе блока управления.

В радиостанции предусмотрен непрерывный и принудительный контроль состояния вхо­дящих в нее устройств. Первый осуществляет постоянный контроль работы передающего и приемного трактов в соответствующем режиме, анализирует текущее значение питающих напряжений. Отказ одного из блоков приводит к индикации неисправности на экране инди­катора.

Принудительный контроль охватывает почти все элементы радиостанции, при этом по­очередно контролируются приемное и передающее устройства. При контроле передающего устройства радиостанция автоматически переводится в режим излучения, а на вход модуля­тора подается испытательный НЧ сигнал заданного уровня и частоты, принудительный кон­троль осуществляется по команде «Тест», задаваемой с блока управления. Результат контро­ля отображается на индикаторе блока управления: «Р/ст исправна» в случае успешного тес­тирования. В противном случае индицируется тот или иной вид отказа, зафиксированный во время теста. Длительность принудительного тестирования радиостанции не превышает 5 с.

Работа радиостанции «Фазан-Р5» аналогична работе базовой радиостанции «Фазан-Р2». Однако усилитель мощности выполнен в виде одного блока, вместо мощного блока БПР используется блок ПСН 100-24 с выходной мощностью 100 Вт. В конструкции приемопередатчика отсутствует прибор охлаждения.

Отличие радиостанции «Фазан-Р8» от радиостанции «Фазан-Р5», кроме выходной мощно­сти, заключается в отсутствии первичного источника питания на 24 В, поскольку такая стан­ция предназначена для использования в автономных ретрансляторах с питающей сетью 24 В.

В радиопередатчике «Фазан-П2» отсутствует блок ПРМ, синтезатор частоты выполнен без элементов гетеродина, а выходной сигнал усилителя мощности напрямую, без ВЧ реле, по­ступает на антенный выход.

В радиоприемнике «Фазан-ПРМ» отсутствуют блоки ПУ, УМФ, УМ, фильтр сетевой. Синтезатор частоты выполнен без элементов возбудителя, блок БПР заменен на блок СИЛ 25-24, исключен прибор охлаждения, а входной сигнал приемника поступает с антенного разъема, минуя ВЧ реле.

Информация о типе оборудования, установленного в приемопередатчик, передается в блок-управления по сигналам «Код 1», «Код 2», и «Код 3».

Блок управления блокирует выполнение операций, запрещенных для данного типа обору­дования (например, включение излучения для радиоприемника «Фазан-ПРМ»).