Чем открыть jpg? Чем открыть файл.JPG

JPEG — это не просто формат файлов для хранения изображений, а сложный метод кодирования и декодирования изображений, который имеет множество настроек.

Современные продвинутые цифровые камеры имеют несколько основных настроек JPEG:

  1. Качество снимка JPEG
  2. Размер снимка JPEG
  3. Настройка параметров снимка

Под качеством снимка понимают количество полезных данных, которые может сохранить JPEG. Формат JPEG был разработан для компактного хранения изображений, в его основе лежат методы и алгоритмы сжатия и оптимизации изображений. Алгоритмы кодирования JPEG чертовски сложны и изощренны, но в основе лежит уровень сжатия, от которого зависит конечное качество снимка. В отличие от BMP, TIFF и подобных форматов, JPEG не хранит данные про каждый отдельный пиксель изображения, а только векторные смещения цветов. По большому счету, это гениальная математическая абстракция изображения, в которой единственным реально закодированным пикселем является верхний левый пиксель. Я не буду вникать в суть сжатия, остановлюсь лишь на том, что именно уровень сжатия в формате JPEG влияет на качество снимка JPEG.

  • Fine — 3,4МБ
  • Norm — 1,8МБ
  • Basic — 0,9МБ

Самое интересное, что объем файлов, которые показывает камера в настройках меню является максимальным расчетным объемом при заданном кодировании. Из-за особенностей алгоритма, например, снимая с качеством Fine, вряд ли можно будет получить файл именно с 3.4МБ, обычно алгоритм справляется лучше и создает более мелкие файлы. Размер файла JPEG зависит именно от того, что имеется на изображении . Если говорить грубо, то снимок с равномерно синим небом алгоритм закодирует с минимальными затратами и в итоге получим вместо 3.4МБ примерно 1МБ. А вот если снимать ночью на высоких значениях ISO, то можно получить файл размером около 3МБ. Это связано с тем, что на высоких значениях ISO будет много цифрового шума, то есть на фотографии будет много разнородных пикселей, для которых сложно подобрать интерполяцию (усреднение) и алгоритму JPEG нужно использовать больше памяти для сохранения всех деталей на снимке.

Внимание: из-за того, что камера рассчитывает количество оставшихся кадров на карточке именно по максимальному допустимому объему снимка, реальное их количество значительно больше. Например, я использую 16GB карточку памяти на . При этом в разных режимах камера показывает:

  • Fine — 4400 фото
  • Norm — 8400 фото
  • Basic — 16.400 фото

А на самом деле у меня в режиме Fine легко помещается свыше 6000 фотографий.

Вот пример падения качества фотографии при использовании программной обработки одного и того же снимка с разным уровнем сжатия.

Качество 100%. Размер файла 308 kb

Качество 70%. Размер файла 107 kb

Качество 40%. Размер файла 89,4 kb

Качество 1%. Размер файла 60,5 kb

В общем случае, то же самое происходит и при разных настройках качества. Очень часто разницу между различными настройками накамерного JPEG почувствовать очень сложно, ведь камера и маркетологи всегда стараются тешить нас хорошими фотографиями. А вот разница в объеме файлов часто очень сильно заметна.

Также, большинство современных цифровых камер имеют настройку размера изображения . Эта настройка показывает, сколько мегапикселей будет иметь снимок. Для примера, :

  • Большой, L (large) — 6.0MP, 3008X2000 точек
  • Средний, M (medium) — 3.3MP, 2256X1496 точек
  • Маленький, S (small) — 1.5MP, 1504X1000 точек

Такая настройка позволяет сохранять файлы не только оригинального размера, который является наибольшим, но и файлы с меньшим количеством точек (пикселей). Данная настройка важна для экономии места. Очень часто снимки могут нести избыточную информацию. Избыточная информация — это пиксели, которые не несут полезной информации. Например такие пиксели являются цифровым шумом, появляются из-за некачественной оптики. При использовании меньшего формата можно ничего не потерять.

Все то же самое касается не только , которую я использовал в качестве примера, но и остальных цифровых камер.

Важное замечание: когда мы используем большой (максимальный) размер изображения JPEG, то кодируется вся информация со всей матрицы фотоаппарата. Когда мы используем меньший размер снимка, то сама камера все равно делает снимок с помощью всей матрицы, то есть, с помощью всех доступных пикселей. Только после этого снимок уменьшается программно до указанного значения. Это связано со стандартным циклом работы АЦП камеры. Не стоит думать, что если снимать в маленьком размере снимка, то будут работать только отдельные пиксели на камере, и при этом можно будет получить увеличение дифракционного порога или экономии заряда батареи.

Важное замечание: практически всегда можно комбинировать качество снимка и его размер . Таким образом можно подбирать любые варианты качества конечного изображения. Также, всякие манипуляции с размером и качеством JPEG очень сильно влияют на возможности буфера кадров современных камер. Чем меньше размер и чем меньше качество — тем больше фотографий может поместить в при серийной съемке. Для примера, в формате JPEG L, Fine может поместить только 7 снимков, а M, Norm целых 17. Собственно, ради манипуляций с буфером я и затевал данную статью.

Алгоритмы, по которым происходит сжатие от размера L до М или S очень сложны и их существует огромное множество. Например, уменьшение снимка можно выполнить и на компьютере, для этого программа обработчик может использовать такие алгоритмы уменьшения размера : LancZos3, Bell, Bicubic, Bilinear, BSplite, FastLinear, LancZos2, Linear, Mitchell, Nearest, Triangle и кучу других. Используя формат JPEG мы из чистой фотографии попадаем в абстрактное математическое поле матриц, векторов и умом непостижимых тонкостей.

720Х479. Файл весит 193 kb

640Х426. Файл весит 159 kb

320Х213. Файл весит 51,2 kb

160Х106. Файл весит 24,1kb

Очень часто огромного размера изображения, например, 30-ти мегапиксельные снимки на мобильные телефоны, занимают огромный объем, а весь потенциал 30-ти мегапикселей попросту не используется. Потому можно смело ставить более маленький размер снимков. От себя добавлю, что для удобного просмотра фотографий даже на самых дорогих мониторах с матрицей 2560×1600 достаточно порядка 4-х мегапиксельного снимка, а для печати форматом 10Х15 вообще нужно всего около 1 мегапикселя. Вспомните, когда в последний раз печатали фотографии, или увеличивали снимок на компьютере? Из личного опыта скажу, что огромное количество пикселей современных камер нужны только для серьезного занятия фотографией. Для обычных бытовых задач я не вижу нужды , а в камере с большим их количеством можно уменьшать размер выходного снимка без серьезной потери в качестве.

Некоторые современные камеры имеют некоторые дополнительные настройки JPEG. Например, продвинутые камеры Nikon, такие как , имеют настройку приоритета качества/размера JPEG. Эта настройка позволяет указать алгоритму на то, что важней при обработке изображения — величина файла или качество.

Важно: для наилучшего качества снимков я, все же, рекомендую использовать наибольший размер снимков с наилучшим качеством. Например, для камер Nikon это L, Fine, приоритет качества. А вот полностью весь потенциал и точность передачу изображения с матрицы на карту памяти может реализовать только формат RAW. Но даже RAW файлы в некоторых камерах проходят через специальную ‘обжимку’ для уменьшения их размеров, здесь нужно быть предельно осторожным.

Выводы:

Формат JPEG — очень интересная методология сохранения графических файлов. Советую поэксперементировать с разным качеством и размером изображения на своих камерах, очень часто можно серьезно экономить место получая хороший результат на фотографиях.

Не забудьте нажать на кнопки соцсетей ↓ — для меня. Спасибо за внимание. Аркадий Шаповал.

JPG - это растровый формат записи и хранения графических изображений, высокая степень сжатия в котором достигается за счет потери качества изображения. Основан на кодировании плавных цветовых переходов и позволяет в разы уменьшить объем данных при записи изображения в файл.

Сжатие изображения осуществляется в два этапа:
1. Изображение разбивается на области и усредняется в той или иной степени в зависимости от параметра QualityКачество. Чем ниже значение этого параметра, тем сильнее будет усредняться изображение.
2. Усредненное изображение компрессируется по алгоритму, близкому к LZV-компрессии в TIF-формате.

Если Вы устанавливаете максимальное значение параметра Quality, то усреднение изображения не производится. Потери качества происходят только на этапе усреднения, поэтому JPG-файлы, записанные с максимальным значением Quality, не имеют визуально различимых потерь качества и ничем не уступают TIF-файлам с LZV-компрессией, а размер их несколько меньше из-за более эффективного алгоритма компрессии.

Принимаются макеты в формате JPG, сохраненные из программы "Adobe Photoshop" с максимальным значением параметра "Quality".

Если при сохранении JPG-файлов Вы используете какие-либо другие программы и/или значения "Quality" меньше максимального, высокое качество печати не гарантируется. Следует учитывать, что изображение, единожды сохраненное в JPG c использованием усреднения, имеет дефекты, которые невозможно устранить, причем эти дефекты особенно заметны при широкоформатной печати.

По материалам wiki энциклопедии - JPEG (произносится «джейпег», по названию организации-разработчика, англ. Joint Photographic Experts Group Объединённая группа экспертов по фотографии) - один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения.jpeg, .jfif, .jpg, .JPG, или.JPE. Однако из них.jpg самое популярное расширение на всех платформах.

Область применения данного формата:

Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF, GIF, PNG или RAW.

JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки. То есть – если Вы открыли изображение JPEG в каком либо редакторе и потом сохранили его, даже не внеся никаких изменений в изображение, то данное изображение сохраняясь в формате JPEG, автоматически, используя алгоритм сжатия, будет сохраняться с изменениями присущими данному алгоритму. Эти изменения будут выражаться и в потере некоторых цветовых переходов, и оттенков, и пикселов и тд., которые на глаз практически неуловимы, но с каждым новым сохранением, конечная картинка будет существенно отличаться от исходной по качеству отображения.

JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, к сожалению, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

Достоинства и недостатки формата JPEG:

К недостаткам сжатия по стандарту JPEG следует отнести появление на восстановленных изображениях, при высоких степенях сжатия, характерных артефактов: изображение рассыпается на блоки размером 8x8 пикселов (этот эффект особенно заметен на областях изображения с плавными изменениями яркости), в областях с высокой пространственной частотой (например, на контрастных контурах и границах изображения) возникают артефакты в виде шумовых ореолов. Следует отметить, что стандарт JPEG предусматривает использование специальных фильтров для подавления блоковых артефактов, но на практике подобные фильтры, несмотря на их высокую эффективность, практически не используются. Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за достаточно высокой (относительно существовавших во время его появления альтернатив) степени сжатия, поддержке сжатия полноцветных изображений и относительно невысокой вычислительной сложности. К тому же изображение, сжатое в JPEG формат имеет не очень большой объем в сравнении с тем же изображении в несжатом состоянии, что очень существенно при применении данного формата для использования в сети интернет.

Алгоритм JPEG позволяет сжимать изображение как с потерями, так и без потерь (режим сжатия lossless JPEG):

Группа экспертов в области фотографии (Joint Photographic Experts Group) в дополнение к известным форматам сжатия изображений JPEG и JPEG 2000, ориентированным прежде всего на сжатие с потерями, предложила также стандарт на сжатие без потерь - JPEG-LS (в котором, однако, предусмотрен также режим сжатия с ограниченными потерями):

Формат JPEG-LS был основан на формате LOCO-I (Low Complexity Lossless Compression for Images). Алгоритм сжатия без потерь LOCO-I, принятый за основу при разработке стандарта JPEG-LS, впервые предусматривал не только lossless, но и near lossless режим (сжатие с ограниченными, задаваемыми пользователем потерями). Декодер JPEG-LS почти не отличается от кодера, поэтому этот алгоритм сжатия симметричный.

Алгоритм сжатия, лежащий в основе JPEG-LS, использует адаптивное предсказание значения текущего пиксела по окружению, включающему уже закодированные пикселы (метод Median Edge Detection), классификацию контекста, контекстное моделирование ошибки предсказания и её коррекцию, а также энтропийное кодирование скорректированной ошибки предсказания (используется кодирование Голомба-Райса). Для повышения эффективности кодирования низкоэнтропийных изображений (или фрагментов изображений) алгоритм предусматривает автоматический переход в режим кодирования длин серий, что позволяет использовать его для сжатия без потерь (или с ограниченными потерями) не только фотореалистических изображений, но и компьютерной графики.

Для цветных (многокомпонентных) изображений стандарт JPEG-LS не предписывает какого-то определённого метода преобразования цветовых компонент, поэтому программы, реализующие JPEG-LS, обычно предлагают выбрать одну схему из нескольких (независимое сжатие цветовых плоскостей, преобразование в стиле JPEG 2000 lossless mode и т.п.).

Формат JPEG-LS разрабатывался, прежде всего, для хранения изображений в медицинских целях, то есть для тех случаев, когда важно иметь большое изображение без малейших потерь качества. Как уже говорилось, за основу был взят формат LOCO-I, разработанный в стенах «HP Labs». Затем он был доработан совместными усилиями «Hewlett-Packard» и «Mitsubishi». Обе компании разрешили использовать их патенты на этот формат без оплаты лицензии, поэтому JPEG-LS можно встретить и в обычных программах для PC.

JPEG 2000 также содержит режим сжатия без потерь. Сжатие без потерь в JPEG 2000 работает медленнее и дает несколько меньшее сжатие по сравнению с JPEG-LS как на искусственных, так и на фотореалистичных изображениях.

JPEG 2000 (или jp2) - графический формат, который вместо дискретного косинусного преобразования, применяемого в формате JPEG, использует технологию вейвлет-преобразования, основывающуюся на представлении сигнала в виде суперпозиции базовых функций - волновых пакетов.

В результате такой компрессии изображение получается более гладким и чётким, а размер файла по сравнению с JPEG при одинаковом качестве оказывается меньшим. JPEG 2000 полностью свободен от главного недостатка своего предшественника: благодаря использованию вейвлетов, изображения, сохранённые в этом формате, при высоких степенях сжатия не содержат артефактов в виде «решётки» из блоков размером 8х8 пикселей. Формат JPEG 2000 так же, как и JPEG, поддерживает так называемое «прогрессивное сжатие», позволяющее по мере загрузки видеть сначала размытое, но затем всё более чёткое изображение. Пока этот формат мало распространён и поддерживается не всеми современными браузерами.

Главный писатель по вопросам технологий

Вам кто-то послал по электронной почте файл JPG, и вы не знаете, как его открыть? Может быть, вы нашли файл JPG на вашем компьютере и вас заинтересовало, что это за файл? Windows может сказать вам, что вы не можете открыть его, или, в худшем случае, вы можете столкнуться с соответствующим сообщением об ошибке, связанным с файлом JPG.

До того, как вы сможете открыть файл JPG, вам необходимо выяснить, к какому виду файла относится расширения файла JPG.

Tip: Incorrect JPG file association errors can be a symptom of other underlying issues within your Windows operating system. These invalid entries can also produce associated symptoms such as slow Windows startups, computer freezes, and other PC performance issues. Therefore, it highly recommended that you scan your Windows registry for invalid file associations and other issues related to a fragmented registry.

Ответ:

Файлы JPG имеют Файлы растровых изображений, который преимущественно ассоциирован с CompactDRAW e-JPG Graphic (MediaChance).

Файлы JPG также ассоциированы с JPEG/JIFF Image и FileViewPro.

Иные типы файлов также могут использовать расширение файла JPG. Если вам известны любые другие форматы файлов, использующие расширение файла JPG, пожалуйста, свяжитесь с нами , чтобы мы смогли соответствующим образом обновить нашу информацию.

Как открыть ваш файл JPG:

Самый быстрый и легкий способ открыть свой файл JPG - это два раза щелкнуть по нему мышью. В данном случае система Windows сама выберет необходимую программу для открытия вашего файла JPG.

В случае, если ваш файл JPG не открывается, весьма вероятно, что на вашем ПК не установлена необходимая прикладная программа для просмотра или редактирования файлов с расширениями JPG.

Если ваш ПК открывает файл JPG, но в неверной программе, вам потребуется изменить настройки ассоциации файлов в вашем реестре Windows. Другими словами, Windows ассоциирует расширения файлов JPG с неверной программой.

Установить необязательные продукты - FileViewPro (Solvusoft) | | | |

JPG Multipurpose Internet Mail Extensions (MIME):

  • mime image/jpeg

JPG Инструмент анализа файлов™

Вы не уверены, какой тип у файла JPG? Хотите получить точную информацию о файле, его создателе и как его можно открыть?

Теперь можно мгновенно получить всю необходимую информацию о файле JPG!

Революционный JPG Инструмент анализа файлов™ сканирует, анализирует и сообщает подробную информацию о файле JPG. Наш алгоритм (ожидается выдача патента) быстро проанализирует файл и через несколько секунд предоставит подробную информацию в наглядном и легко читаемом формате.†

Уже через несколько секунд вы точно узнаете тип вашего файла JPG, приложение, сопоставленное с файлом, имя создавшего файл пользователя, статус защиты файла и другую полезную информацию.

Чтобы начать бесплатный анализ файла, просто перетащите ваш файл JPG внутрь пунктирной линии ниже или нажмите «Просмотреть мой компьютер» и выберите файл. Отчет об анализе файла JPG будет показан внизу, прямо в окне браузера.

Перетащите файл JPG сюда для начала анализа

Просмотреть мой компьютер »

Пожалуйста, также проверьте мой файл на вирусы

Ваш файл анализируется... пожалуйста подождите.

В интернете популярна байка, что ничего в нашем мире не изменилось со времен Древнего Египта – люди все так же пишут на стенах и любят котиков. Так вот, фотографии милых домашних питомцев – это и есть JPEG, растровый формат графики, специально разработанный для сохранения изображений в тех случаях, когда требуется естественность и реалистичность.
Сокращение JPEG отражает название рабочей группы создателей этого формата – Joint Photographic Experts Group – объединенная группа экспертов-разработчиков. Вот как они себя пафосно называют – группа экспертов.
На самом деле разработка оказалась очень даже удачной и сегодня формат JPEG является наиболее популярным, часто применяемый и всем известным.

Больше всего формат полюбился фотографам и веб-разработчикам. И вот почему:

  • Достигается действительно высоко реалистическая фиксация картин природы, животных, портретов людей при небольшом объеме файла, благодаря алгоритмам сжатия.
  • Часто JPEG используется для создания цифровых библиотек с целью хранения фотографий

Одним из достоинств формата является возможность сжатия графических файлов в достаточно широком диапазоне, что достигается путем задания уровня сжатия (диапазон настройки от 25 до 100%, при этом 100% - сжатие без потерь) Например, цифровая фотография в формате RAW может весить 2-3 десятка мегабайт, а то и больше, что очень много для хранения большого количества изображений и слишком "тяжело", чтобы опубликовать такое изображение на странице сайта или блога. Парочка таких фотографий и пользователь будет вынужден часами ждать загрузки сайта. Кроме этого вероятность отображения такой фотографии стремится к нулю, так как не все приложения и браузеры смогут отобразить фотографии RAW формате.
Поэтому основная часть фотографий конвертируется или создается непосредственно в формате JPEG. На нашем сайте вы сможете бесплатно сконвертировать ваши изображения в JPEG с различными настройками , при этом вы можете подобрать необходимые вам настройки, такие как алгоритм сжатия и качество изображения, тем самым вы можете значительно уменьшить размер файла или сохранить качественную картинку, при минимально возможном размере файла.

Так же вы можете уменьшить разрешение изображения, если это изображение в несколько мегапикселей, при этом на экране компьютера, тем более мобильного устройства, пользователь практически не увидит серьезного снижения качества графики. Тем самым вы значительно сократите размер изображения, без видимых потерь.

В какой программе можно открыть и отредактировать фотографии JPEG?

Как это обычно бывает – в поисках совершенства разработчики провели множество экспериментов и сегодня существует приличное многообразие видов, подвидов и мутаций базового формата JPEG. Расширения файлов могут сильно различаться.

  • .jfif

Однако беспокоиться не нужно – все приличные программы для редактирования фотографий отлично понимают все эти версии формата и с успехом могут с ними работать.
Для профессионалов и продвинутых пользователей хороший графический редактор всегда имеет специальный интерфейс для тонкой настройки цветовых преобразований и способа сжатия.

Особенности сжатия формата JPEG

Технологию сжатия графических файлов можно упрощенно описать примерно, как это происходило в старинных ленточных видеомагнитофонах.

  • При пропадании данных о строке, система вычисляет средние параметры двух соседних строчек изображения и таким образом происходит восстановление полноты картинки на экране.

Что-то вроде этого, только по более сложным алгоритмам, происходит и в процессе сжатия файлов фотографий. Особым преимуществом JPEG стало то, что процесс сжатия производится очень быстро и фотографу не придется долго ждать окончания обработки изображений. Это важно при профессиональной работе фотографа либо контент-менеджера, администрирующего многостраничные интернет-порталы.
В зависимости от требований по качеству и размеру фотографий можно задавать степень сжатия в широких пределах.
Однако следует понимать и то, что сжатое изображение неизбежно будет иметь какие-то потери и восстановить исходное качество картинки не удастся.
Особенно сильно теряется качество при многократной обработке графических файлов. Такое чрезмерное сжатие нередко приводит к появлению ореолов, ухудшению резкости на отдельных участках фотографии.
В некоторых сферах малейшие искажения изображения недопустимы и могут привести к негативным последствиям.
Например, в медицине, чтобы врачи смогли делать безошибочную диагностику, фотография исследуемых органов должна в точности соответствовать реальной клинической картине. Получается, что от формата графики может зависеть жизнь и здоровье людей.
На такие случаи существуют форматы изображений со сжатием без потерь.

  • Lossless JPEG
  • JPEG 2000
  • JPEG LS

Просто в процессе редактирования изображений следует помнить о таких особенностях формата и выбирать подходы к обработке графики в зависимости от стоящей задачи.

Недостатки формата JPEG


И на солнце есть пятна, а JPEG не всегда является лучшим выбором.
Например, этот формат очень хорошо отображает многоцветные картины с плавными переходами оттенков. Но если вам требуется получить очень четкую инженерную схему, карту местности, другое изображение, где критически важна читаемость всех мелких деталей – то формат JPEG может не обеспечить требуемых параметров.
Для изображений, где необходима предельная детализация (и не обязательна плавность цветовых градаций) лучше подходят форматы GIF и PNG.

Как уже было сказано в предыдущем разделе, формат GIF и другие форматы, использующие сжатие за счет повторяющихся групп пикселов, хорошо подходят для хранения изображений схем, диаграмм и других подобных объектов. При попытке сохранения в таком формате, например, фотографий алгоритмы сжатия не эффективны.

Для хранения в сжатом виде полноцветных изображений требуются другие алгоритмы, позволяющие, с одной стороны, сохранить все цвета изображения, а с другой стороны - обеспечить высокую степень сжатия информации.

Наиболее распространенным в настоящее время форматом, предназначенным для хранения полноцветных фотоизображений, является формат JPEG. Работы над его созданием были начаты в 1982 году, когда в рамках Международной Организации по Стандартизации (International Standardization Organization - ISO) была создана Группа экспертов по машинной обработке изображений (Photographic Experts Group - PEG). Эта организация занималась вопросами передачи видеоданных, изображений и текста по каналам цифровой связи. Целью исследований была разработка международных стандартов в области передачи данных этих типов в компьютерных сетях. В 1986 году Международный Консультационный Комитет по Телеграфии и Телефонии (Consultative Committee for International Telephone and Telegraphy - CCITT) начал разработки, направленные на создание алгоритмов передачи факсимильной информации (цветных и монохромных изображений). Алгоритмы, созданные специалистами этих организаций, оказались схожими между собой и в 1987 году организации объединили свои усилия по разработке единого стандарта сжатия изображений.

Результатом этого сотрудничества стал формат JPEG (Joint Photography Experts Group - Объединенная группа экспертов по машинной обработке изображений), позволяющий реализовать сжатие полноцветных или монохромных изоораже-ний до размеров, удобных для передачи по каналам связи. В отличие от формата GIF, JPEG позволяет хранить изображения, содержащие до 16 млн оттенков.

Так как фотографии и видеоизображения часто содержат протяженные области с плавными переходами цвета (градиентами), для их сжатия не подходят алгоритм LZW или подобные ему. Они не дают большого выигрыша в размере файла. Для качественной компрессии понадобились новые алгоритмы, основанные на других принципах.

В основе JPEG лежит так называемое сжатие с потерями. Это значит, что сжатие изображения происходит за счет выбрасывания мелких, незначительных деталей. Во многих случаях эти детали столь малы и незаметны, что человек не В состоянии заметить разницу между сжатым изображением и оригиналом. Однако разница в размерах соответствующих файлов может быть значительной.

Основы алгоритма JPEG - преобразование информации о цвете, хранимой отдельно для всех цветовых составляющих одного пиксела, в область частот с последующей фильтрацией. Проще говоря, для хранения данных о цвете используются не цветовые составляющие каждого пиксела, а сведения о том, как изменяется вклад той или иной составляющей в результирующий цвет. Такие методы обработки основываются на принципах частотного анализа, широко применяемого в радиоэлектронике. В данном случае изменение яркости или цветовых составля-юцих от пиксела к пикселу описывается в виде набора колебаний (по аналогии с радиоэлектроникой эти колебания можно назвать составляющими сигналами) различной частоты и амплитуды. Такую операцию также называют определением спектра сигнала.

ПРИМЕЧАНИЕ. Преобразование сигналов в набор частотных составляющий осуществляется при помощи так называемого прямого преобразования Фурье. Обратное преобразование Фурье позволяет синтезировать сигнал по его спектру.

Простейший случай такого преобразования изображен на рис. 2.6. Линии графика обозначает изменение значения одного из компонентов пиксела (например, яркости). Синусоида представляет собой первую гармонику (частотную составляющую) этого «сигнала», с частотой, равной частоте повторения «импульсов» яркости. Вторая гармоника будет иметь частоту, в два раза превышающую частоту первой, третья - в три раза и т. д. Каждая из таких частотных составляющих описывается частотой, амплитудой и начальной фазой.

Рис. 2.6. Выделение низкочастотной составляющей из зависимости изменения яркости пикселов от координаты X

При использовании подобного частотного разложения теоретически можно вначале выделить из сигнала бесконечное число составляющих (гармоник), а потом просуммировать их и получить исходный сигнал. Однако реализовать это на практике сложно. Дело в том, что работать с бесконечными рядами невозможно, а обработка ряда с большим количеством элементов займет много машинных ресурсов. Поэтому приходится обходиться некоторым числом составляющих, которое зависит от требуемой точности воспроизведешь сигнала.

ПРИМЕЧАНИЕ. В радиоэлектронике разложение сигнала на частотные составляющие и последующий синтез сигнала по ним часто используются при моделировании радиосистем. Это позволяет получить представление о работе устройства при помощи математического моделирования. Расчеты, требуемые для моделирования даже простой системы, довольно сложны и трудоемки, поэтому обычно они выполняются на компьютере.

Ограничиться некоторым числом составляющих можно благодаря тому, что с ростом частоты амплитуда гармоник существенно убывает. Если требования к точности невысоки, то часто можно рассмотреть только 5-10 самых низкочастотных составляющих, а остальными пренебречь. Разумеется, часть информации при этом будет потеряна, но сигнал будет воспроизведен с приемлемой точностью.

Обратите внимание: уменьшая число рассматриваемых составляющих сигнала, мы тем самым уменьшаем объем информации, описывающей этот сигнал, то есть производим сжатие данных.

ПРИМЕЧАНИЕ. Даже если отбрасывать составляющие сигнала, потери все равно возникнут. Дело в том, что компьютер производит все операции с определенной точностью. Из-за округления изображение исказится даже при отсутствии сжатия.

В этом утверждении заложена сущность всех алгоритмов сжатия изображения с потерями. Частью информации можно пренебречь ради того, чтобы воспроизвести изображение с приемлемой точностью и при этом достичь уменьшения объема описывающих его данных. Конечно, при этом теряются некоторые детали изображения, его качество снижается, но, разумно выбирая алгоритм и степень сжатия, можно добиться того, что файл с картинкой значительно уменьшится в объеме, а сама картинка останется пригодной к использованию.

Для лучшего понимания основ работы алгоритма JPEG следует рассмотреть особенности восприятия человеком окружающей его реальности. Человеческий глаз более чувствителен к яркости, чем к цветовым составляющим изображения. Если вы переведете картинку в монохромный режим (яркий пример - черно-белый телевизор), то изображенные предметы останутся узнаваемыми - вы сможете сказать, что изображено, и даже определить некоторые свойства объекта, например, материал, из которого он состоит. Изображение же, содержащее цвета, но лишенное яркостной составляющей, практически перестает быть узнаваемым.

Вы можете легко убедиться в этом при помощи PhotoShop. Просто закрасьте какую-либо картинку любым цветом (но не черным и не белым) при помощи инструмента Paintbrush (Кисть) в режиме Luminosity (Яркость). При этом все пикселы приобретут яркость цвета кисти.

Итак, перед нами два основных компонента алгоритма сжатия изображений JPEG. С одной стороны, разложив некоторый сигнал (в данном случае это - информация об изображении) на частотные составляющие и отбросив самые незначительные из них, мы можем достичь сжатия данных. С другой стороны, человеческий Глаз устроен так, что он воспринимает в первую очередь яркость изображения и уже потом - его цветовые характеристики. Это предоставляет два способа уменьшения объема файла изображения, которые и используются в алгоритме JPEG.

  • объем хранимых и передаваемых данных может быть уменьшен путем разложения информации о цвете на частотные составляющие с последующим отбрасыванием самых незначительных из них - «лишних»;
  • так как глаз человека более чувствителен к яркости изображения (в данном случае оно состоит из пикселов), чем к его цвету, то следует стремиться передать без искажений информацию о яркости пикселов, а информацией об их цвете можно до определенной степени пренебречь.

Использование этих методов позволяет достичь высокой степени сжатия и значительно уменьшить объем файлов, содержащих изображение. Грамотное использование алгоритма позволяет получить настолько высокое качество воспроизведения картинки, что различить сжатое изображение и оригинал практически невозможно.

При сохранении изображения в формате JPEG над ним производятся перечисленные ниже операции:

  1. Изображение преобразуется из исходной цветовой модели (например, RGB, в которой каждая точка описывается тремя цветовыми составляющими) к модели, содержащей яркостный компонент и два компонента, определяющие цвет точки. Это необходимо для раздельной обработки яркостной и цветовой составляющих изображения. Если изображение уже находится в подходящем цветовом режиме, преобразования не требуется. В дальнейшем все компоненты обрабатываются независимо друг от друга.
  2. Цветовые компоненты усредняются между соседними пикселами, что позволяет снизить объем данных, требуемых для их передачи. Обычно усреднение производится так, что «поле» цветовых компонентов уменьшается в два раза по вертикали и по горизонтали. Например, для изображения 400x400 пикселов будут получены «поля» цветовых компонентов размером 200x200. Возможны и другие сочетания коэффициентов пропорциональности сторон, например 2:1, но они дают меньшую степень сжатия. Яркостный компонент на этом этапе не изменяется. Благодаря этому яркость изображения подвергается меньшим искажениям.
  3. Применение дискретного преобразования Фурье. Изображение (точнее, каждый из его компонентов) разбивается на блоки 8x8 пикселов, к которым применяется дискретное преобразование Фурье. При этом информация о значении того или иного компонента представляется в виде соответствующих колебаний. По аналогии с радиотехническими сигналами можно выделить в преобразованных компонентах некоторое среднее значение (некоторый аналог постоянного тока), а также переменную составляющую (аналог переменного тока). Высокочастотные (быстрые) изменения параметров менее заметны, чем изменения низкочастотные (плавные). Поэтому верхние частоты могут быть отброшены.
  4. Квантование значений параметров. Для отбрасывания ненужных компонентов значения, полученные в ходе преобразования Фурье, делятся на весовые коэффициенты и округляются. Для каждой точки внутри блока преобразования (8x8 пикселов) используется свой коэффициент, который выбирается из специальной таблицы. Для яркости и цветовых составляющих требуются отдельные таблицы. Составлять такие таблицы достаточно сложно, поэтому большинство кодировщиков JPEG используют стандартную таблицу ISO.

    Именно на этом этапе производится регулировка качества изображения. Из-меняя весовые коэффициенты, можно определить, какая часть информации будет отброшена. При этом качество изображения и размер файла изменяются обратно пропорционально друг другу.

  5. Сжатие полученных значений без потерь. Для устранения повторов в полученных значениях параметров изображения данные дополнительно сжимаются по методу Хаффмана. Этот метод основывается на замене всех кодов, встречающихся в исходных данных, на новые, причем наиболее часто встречающиеся комбинации получают самые короткие «обозначения». Этот метод позволяет достичь высокой степени сжатия без потери информации.

Для раскодирования данных необходимо выполнить эти операции в обратном порядке.

  1. Данные разархивируются в соответствии с методом Хаффмана. В результате получаются отсчеты параметров изображения.
  2. Из файла считывается таблица весовых коэффициентов. С ее помощью восстанавливаются результаты преобразования Фурье, выполненного при сжатии. В зависимости от степени сжатия, заданной кодировщиком, эти данные в той или иной степени соответствуют исходным.
  3. Над отсчетами частотных составляющих производится обратное преобразование Фурье. Это позволяет восстановить значения компонентов изображения.
  4. Полученные значения цветовых компонентов «распределяются» между соседними пикселами. Это необходимо из-за того, что при сжатии «поле» цветовых компонентов было уменьшено. Яркостный компонент сразу готов для последующей обработки.
  5. Для удобства вывода на экран или выполнения обработки изображение преобразуется в одну из цветовых моделей (например, в RGB для вывода на экран, или в CMYK для печати).

После того, как мы рассмотрели принцип работы алгоритма JPEG, можно подробнее остановиться на сферах его применения.

Основная проблема, ограничивающая применение этого формата - уменьше-ние качества изображения при увеличении степени сжатия. Причем для каждого изображения приемлемая степень сжатия будет разной. Определить ее проще всего подбором.

Досмотрим, как сказывается сжатие на качестве изображения. Для этого сохраним фотографию в формате JPEG. На рисунке 2.7 приведено исходное изображение. Размер исходного TIFF-файла - 760 Кбайт.


Рис. 2.7. Изображение до сохранения в формате JPEG

На рис. 2.8 приведены увеличенные фрагменты этой же картинки после сжатия в различных режимах. Все изображения сохранялись при помощи Adobe PhotoShop. Для них приведено значение показателя качества, используемого в этой программе.

а д
б е
в ж
г з

Рис. 2.8. Увеличенные фрагменты изображения (см. рис. 2.7) после сохранения в формате JPE(S с различными значениями показателя качества (а - 0,б - 2,8 - 4, г -6,д - 8,е - 10, ж - 12, з - оригинал)

Размеры файлов после сохранения в JPEG (см. рис. 2.8): а - 11 Кбайт, б - 15 Кбайт, в - 24 Кбайт, г - 34 Кбайт, д - 40 Кбайт, е - 65 Кбайт, ж - 117 Кбайт.

Из рис. 2.8 видно, что при степени сжатия, близкой к максимальной, на изоб-ражении возникают шумы и искажения. В частности, на рис. 2.8, а четко видны границы блоков, на которые изображение было разбито при обработке. На рис. 2.8, б можно заметить другой вид искажений, свойственных JPEG - размытие кон трастных границ и линий. Эти искажения возникают вследствие того, что из-за недостатка информации изображение, считанное из файла, не может быть т воспроизведено с достаточной точностью.

ПРИМЕЧАНИЕ. Искажения, вносимые в картинку кодировщиком JPEG, часто называют артефактами JPEG.

Результаты этого небольшого эксперимента позволяют сделать вывод о том, что формат JPEG хорошо подходит для хранения фотографий и других изображе ний, содержащих много различных оттенков с плавными переходами между ними. А вот изображения, содержащие четкие линии (например, чертежи), в нем со хранять не следует - линии могут смазаться (см. рис. 2.8, б). Также не следует сохранять в этом формате изображения, содержащие большие однотонные плоскости - на них может возникнуть шум.

Тестирование показало нам, что при помощи JPEG можно достичь значительной степени сжатия. Например, для изображения, показанного на рис. 2.8 а, она составила 69,09. Однако качество изображения при таких режимах сохранения может стать неприемлемым. Разумно выбирая режим, можно добиться высокого качества изображения и при этом значительно уменьшить их размер на диске. Так, для картинки, которую вы можете видеть на рис. 2.8, д, степень сжатия равна 19, а качество вполне подходит для оформления web-страниц или виртуальной галереи. Файл, фрагмент содержимого которого показан на рис. 2.8, з, занимает в 6,5 раза меньше места, чем оригинал, а изображение не уступает оригиналу по качеству.

Итак, мы рассмотрели принципы работы и основные свойства алгоритма JPEG. Но это только основной (базовый) вариант стандарта. У этого формата есть несколько дополнений, каждое из которых существенно расширяет его возможности.

ПРИМЕЧАНИЕ. В англоязычной литературе базовый вариант JPEG часто называется «baseline» (ба зовый) или «standard» (стандартный). Некоторые производители могут не поддерживать расширения формата.

Среди таких расширений можно назвать прогрессивное построение изображений, разбиение изображений на зоны с разными показателями качества, сохранение нескольких изображений с разной разрешающей способностью в одном файле и т. д. Для web-дизайна наиболее полезным является прогрессивное построение изображений. При использовании этой функции файл сохраняется за несколько проходов. После загрузки на компьютер пользователя данных об одном проходе изображение сразу выводится на экран, но с низким качеством.

По мере загрузки оставшихся данных качество изображения повышается.

У файлов, сохраненных с использованием прогрессивного построения изображений, есть еще одно достоинство - они обычно имеют несколько меньший размер, чем файлы, сохраненные в стандартном формате.