Зарядное устройство акб автомобиля на микроконтроллере. IMAX по-русски: USB-вариант умной зарядки на микроконтроллере для любых аккумуляторов. Радиотехника, электроника и схемы своими руками. Описание зарядного устройства

Все технические вопросы на [email protected]
Схему и печатную плату скачиваем отсюда.
Силовой внешний транзистор IRF540N и вентилятор в комплект не входит.

Любой автовладелец рано или поздно сталкивается с задачей заряда своего аккумулятора. Это бывает по разным причинам. Например при похолоданиях, когда емкость батареи падает из-за низкой температуры окружающей среды. Либо если батарея долго стояла без использования и напряжение на ней упало до критической отметки. Или она просто состарилась. В таких случаях часто используют купленное зарядное устройство(ЗУ), либо самодельное ЗУ изготовленное своими руками.

Часто автовладельцы изготавливают ЗУ не потому что, отсутствуют деньги на приобретение готового, а потому что, сделать своими руками что то, это очень интересно и увлекательно и полезно. По этой причине интернет завален многочисленными схемами зарядных устройств, от простейших на одном транзисторе до сложнейших с управлением на микроконтроллерах.

Однако важно помнить, что все таки правильный заряд аккумуляторной батареи это сложный электрохимический процесс. И зачастую простые радиолюбительские схемы не в состоянии отследить важнейшие праметры заряда. Токи, напряжение подъема и спада, временные интервалы, отключение батареи в конце цикла заряда и др. процессы. И частое использование таких не совсем корректных схем, может привести к значительному сокращению жизни батареи. Собрать же более сложное ЗУ порой бывает не под силу каждому.

Данная плата поможет сократить разрыв, между желанием и возможностью сделать свое ЗУ. Плата представляет собой полуфабрикат ЗУ автомобильной батареи. В данном полуфабрикате уже реализована самая сложная часть зарядного устройства, а именно микроконтроллероное управление процессом заряда. Сердце, платы это микроконтроллер Atmega88. Как известно сам микроконтроллер ничего не может делать, так как это программируемая микросхема. И чтобы устройство управляемое микроконтроллером начало работать, необходимо написать программу и залить ее в чип. Сделать это не так просто, нужен и опыт и знание в написании программ. Онако этот самый сложный этап, уже реализован в плате, остается только правильно собрать оставшуюся часть схемы. И вот тут автолюбитель уже может приложить сою руку, навыки и умение. Итак что же останется сделать после приобретения платы?

1. Подключить питание к плате (17-24B, не менее 8А).

2. Подключить силовой в согласии со схемой.

Данное зарядное устройство предназначено для независимой автоматической зарядки трёх малогабаритных АКБ, размера ААА, АА. Весь процесс зарядки индицируется светодиодами. Если аккумулятор не разряжен до 1-го вольта, то ЗУ проведёт его разрядку и только потом начнётся зарядка, по окончании которой ЗУ проверит работоспособность аккумулятора, и если он будет неисправен, то подаст соответствующий сигнал.
За основу своей конструкции, я взял схему из журнала «Радио» № 10 за 2007 год - «Зарядное устройство на микроконтроллере PIC12F675», стр. 33-35.

Схема зарядного устройства и схема блока питания, приведены ниже на рисунках 1 и 2. В оригинальном зарядном устройстве, был использован импульсный блок питания на микросхеме TNY264, который подробно описан в журнале "Радио" за 2006 год, стр. 33-34, и в качестве которого можно использовать любой подходящий блок питания, с выходным напряжением 9 - 12 вольт, и током нагрузки от 1,5 ампера.

Рисунок 1.
Схема электрическая принципиальная.

Рисунок 2.
Схема электрическая принципиальная блока питания.

Программа для применённого в схеме микроконтроллера PIC12F675, постоянно дорабатывается. На данное время есть версия прошивки ZU_12F675_V_6.5.1. Я прошил версией ZU_12F675_V_6.4. Работает нормально. В прикреплённом архиве имеются все эти прошивки.
Данное зарядное устройство так же можно собрать и на микроконтроллере PIC12F683, программа для него написана пользователем kpmic с форума, ссылка на который приведена ниже и основательно отличается от версий для МК 12F675.
На данном микроконтроллере я работу устройства не проверял, а прошивка для него также имеется в прикреплении.
Да, схема и плата при применении данного микроконтроллера переделки не требует, отличие от версий для МК 12F675
измерение напряжения производится по прерыванию АЦП..

Работа схемы.

После подачи питающего напряжения, МК DD1 последовательно проверяет наличие подключенных к ячейкам аккумуляторов. При отсутствии напряжения на гнезде XS1 - МК DD1 "делает вывод”, что аккумулятор не установлен и переходит к анализу состояния следующей ячейки. Когда аккумулятор подключен, MK DD1 измеряет его напряжение, и если оно более 1 В. ячейка включается на режим разрядки.
На выводе 5 регистра DD2 появляется высокий уровень напряжения, открывается транзистор 1VT3, и через него и резистор 1R8 протекает ток разрядки около 100 мА, а светодиод 1HL2 начинает светить, индицируя этот режим.
Как только напряжение аккумулятора станет менее 1 В, МК DD1 выключит режим разрядки и светодиод 1HL2 погаснет. Высокий уровень появится на выводе 6 регистра DD2, откроются транзисторы 1VT1 и 1VT2, начнется зарядка аккумулятора и загорится светодиод 1HL1.
В этом режиме МК DD1 периодически измеряет напряжение на аккумуляторе, и когда оно достигнет значения 1,45 В, он начинает проверять возрастает напряжение или нет. Когда напряжение перестает увеличиваться, режим зарядки прекращается и кратковременно включается режим разрядки (загорается светодиод 1HL2) и измеряется напряжение на аккумуляторе. Если оно будет 1,1 В и менее, что свидетельствует о неудовлетворительном состоянии аккумулятора, светодиод 1HL2 станет мигать.

При подключении к ЗУ аккумулятора, напряжение на котором менее 1 В, режим зарядки включается сразу.
Для охлаждения элементов ЗУ применен вентилятор М1, который начинает работать при включении режима зарядки любого из аккумуляторов. Так как на него поступает напряжение питания меньше номинального (примерно 8,5 В), вращается он медленно, но производительности достаточно для охлаждения устройства. После окончания зарядки всех аккумуляторов вентилятор прекращает работу, а светодиод HL1 зеленого цвета свечения начинает мигать, показывая, что ЗУ можно отключить от сети.

ЗУ собрал на печатке, которую сделал по размерам имеющегося корпуса

Рисунок 3.
Печатная плата ЗУ.

При номиналах 1R2 24Ома - ток заряда около 0,22А и 1R8 10 Ом - ток разряда - 0,1А. Если нужны другие токи (под конкретный АКБ), то необходимо подбирать эти резисторы.

При прошивке МК особое внимание об-ратить на калибровочный байт, прошитый на заводе. Перед программированием необходимо прочитать содержимое его памяти. В конце последней строки вместо 3FFF будет 34ХХ это и есть байт, после загрузки hex в буфер программы эту константу нужно вернуть на место вручную ! Ели затереть калибровочный байт, ЗУ не будет работать.

Ниже на рисунке 4, он обведён красным квадратом.

Рисунок 4.
Скрин с калибровочным байтом.

Если собрано все правильно, детали исправные, МК прошит как говорилось раньше, то ЗУ начинает работать сразу.
В процессе прогонки (проверки работоспособности, проверка max тока потребления, чтобы определиться с блоком питания) проводил заряд-разряд АКБ на всех каналах по раздельно и вместе.

У применённой мной версии прошивки, после включения устройства - кратковременно мигают светодиоды разряда.
Если напряжение больше 1 V - включается разряд, загораются светодиоды разряда и светодиод индикации включения.
Желтый (1HL2) - разряд до 0,9 V, красный (1HL1) - заряд, напряжение зависит от состояния аккумулятора, чем хуже аккумулятор, тем выше напряжение, может доходить до 2,5 V (зависит от внутреннего сопротивления аккумулятора).
После окончания заряда, на 10 сек. включается желтый (разряд) и измеряется напряжение на аккумуляторе, и если оно упало до 1,1 вольта (и ниже), то мигает желтый светодиод. Аккумулятор в таком случае можно выкинуть или использовать в пультах управления. Хватает на пару месяцев.
При тестировании использовал свой лабораторный БП:

Рисунок 5.
Лабораторный БП.

Зеленый (HL1) включается при отсчете минутных интервалов, вспыхивает каждую минуту.
Так как устройство предназначенного для длительной работы (полный цикл заряд-разряд АКБ 2,8 А/ч занял около 15 часов), то желательно проконтролировать температурный режим силовых элементов (1DA1, 1VT2 во всех каналах) в подготовленном Вами корпусе.
Я сначала установил 1VT2 такие, как по схеме - КТ973, но в процессе работы «уж больно сильно они грелись» - до 70С. Пришлось поставить по мощнее - TIP146 (по схеме Дарлингтона, составные, аналог КТ825). Можно было в принципе оставить и КТ973, только желательно предусмотреть для них теплоотвод.
7805 тоже порядочно греются, если есть возможность, то их тоже лучше ставить на радиатор (все три на общую пластину через изолятор).

После всех тестов определился с параметрами необходимого БП, который должен иметь напряжение 9,5 V, и с током нагрузки 1,5 А.
Сначала пытался использовать и «китайские» малогабаритные БП, потом принял решение собирать ИБП по подобию в оригинале, на основе микрух TNY267PN (имеются в наличии). При проектировании использовал программу PIExpertSuite. Данная прога очень упрощает изготовление ИБП.
Вот скрин рабочего проекта:

Рисунок 6.
Скрин рабочего проекта схемы БП.

Рисунок 7.
Спецификация (список элементов).

Схема электрическая принципиальная, применённого мной в устройстве блока питания.

Рисунок 8.
Схема блока питания.

Программа PIExpertSuite очень удобная для проектирования импульсных блоков питания (правда, только на основе подобных микрух) и дает все рекомендации в использовании и применении компонентов, а также и изготовлении импульсного трансформатора.

Изготовил плату ИБП

Рисунок 10.
Печатная плата ИБП.

Собрал, проверил в работе.

Рисунок 11.
Собранная конструкция блока питания.

При изготовлении ЗУ обратил внимание, что в схеме есть неточности: вывод 4 (GP3/MCLR) DD1 подключить к плюсу питания через резистор 1 к; перепутаны ноги DD1 5, 7 - это 1-й и 3-й канал (просто поменять местами при изготовлении платы).

Рисунок 12.
Плата БП в корпусе.

Рисунок 13.
Плата ЗУ в крышке корпуса.

Рисунок 14.
Компоновка устройства.

По данному ЗУ есть форум журнала "Радио", где обсуждаются некоторые вопросы по повторению данной конструкции…

Если кто-то заинтересуется данной конструкцией, и в процессе сборки, или настройки возникнут какие либо вопросы, то задавайте их на форуме. Чем смогу - обязательно помогу и отвечу на вопросы.

В прикреплённом вложении содержатся все необходимые файлы для сборки ЗУ.

Архив для статьи.

Краткое описание:

  • Точная калибровка тока и напряжения
  • Использование зарядного устройства без ПК
  • 12 профилей (данные хранятся в зарядном устройстве)
  • 17 различных параметров на каждую батарею, 5 редактируемых в приборе, 12 на программное обеспечение для ПК
  • Параметры редактируемые в приборе

    • Тип аккумулятора
    • Ёмкость аккумулятора
    • Количество ячеек
    • Зарядный ток
    • Разрядный ток

    Параметры редактируемые автономно (с помощью ПК)

    • Напряжение окончания заряда (все типы)
    • Дельта пик напряжение (NiCd и NiMh)
    • Максимальное напряжение заряда (LiPo и SLA)
    • Зарядный конечный ток (LiPo и SLA)
    • Максимальная ёмкость заряда

    Общие параметры зарядного устройства (с помощью программного обеспечения)

    • Выбор аккумулятора - профиля
    • Максимальный ток заряда
    • Максимальный ток разряда
    • Напряжение и ток калибровки
    • Настраиваемые поля приветствия (две стрки)

    Возможность заряжать:

    1. Никель-кадмиевый
    2. Никель-металл
    3. Литий-полимерная
    4. Герметичные свинцово-кислотные

    Работа с программным обеспечением


    Запускаем программу Universal_manager.exe , справа выбираем COM порт (1-16), подсвечиваются только действующие порты.

    Backup and Restore

    Позволяет сделать резервное копирование с зарядки в файл и восстановить данные путем записи с файла в зарядку. Внизу страницы отображается процесс установки.

    Charger Parameters

    Actual Profile - (0-11) профили настройки, все настройки отображенные ниже можно сохранить в профиль, далее выбирая профиль в зарядке можно выбрать те или иные настройки сохраненные ранее.

    MAX charge current - (0-255) максимальный ток заряда в Амперах, заряд будет ограничен этим значением тока.

    MAX discharge current - (0-255) максимальный ток разряда в Амперах, разряд будет ограничен этим значением тока.

    Buzzer frequency - (50-10000) частота динамика в Гц. С какой частотой будет звучать buzzer .

    R6

    R5 - (0-65536) корректировка сопротивления резистора в Ом.

    Current pick-up sens - (0-65535) чувствительность датчика тока

    Для датчика тока LTS-25NP: 25000

    Для датчика тока ACS750-50: 40000

    Suspended action - (0-2) при запуске программы выполняет действие, только при условии что кнопки не нажаты, почему-то работает только один раз, при следующем запуске записывается как "0", абсолютно непонятная функция.

    0-ничего не делать

    First hello line -(16 символов) строка приветствия. Когда зарядка включается отображается надпись на первой строчке.

    Second hello line -(16 символов) строка приветствия. Когда зарядка включается отображается надпись на второй строчке.

    Profiles Parameters

    Cell chemistry -(0-3) выбор типа аккумулятора :

    0:NiCd, 1:NiMh, 2:LiPo, 3:SLA

    Cell capacity -(100-25500) ёмкость аккум. в мА.

    Number of cells -(1-19) количество банок аккум.

    Charge current -(0.1-25.5) коэффициент тока заряда, как правило 1.0 коэфф. При токе в 1000мА и коэфф. 1.0 зарядный ток равняется 1А.

    Discharge current -(0.1-25.5) коэффициент тока разряда, как правило 4.0-6.0 коэфф. При токе в 1000мА и коэфф. 4.0 разрядный ток равняется 4А.

    Charge peak inhibit -(0-255) дельта-пиковый контроль, типичное значение 5-10 минут. Если аккум. долгое время не использовался то время следует увеличить.

    Cutoff NiCd -(0-2550) минимальное напряжение NiCd акум. процесса разряда в мВ, типичное значение 700-900мВ.

    Cutoff NiMh -(0-2550) минимальное напряжение NiMh акум. процесса разряда в мВ, типичное значение 900-1100мВ.

    Cutoff LiPo -(2500-3500) минимальное напряжение LiPo акум. процесса разряда в мВ, типичное значение 3000мВ.

    Cutoff SLA -(1500-2500) минимальное напряжение SLA акум. процесса разряда в мВ, типичное значение 2000мВ.

    Delta peak NiCd -(0-255) дельта-пик, используется когда зарядка завершена, типичное значение 5-10мВ.

    Delta peak NiMh -(0-255) дельта-пик, используется когда зарядка завершена, типичное значение 3-7мВ.

    Max. voltage LiPo -(3500-4500) максимальное напряжение в мВ прекращения заряда, после достижения этого порога, зарядка переходит из режима постоянного тока в постоянное напряжение, типичное значение 4200мВ.

    Max. voltage SLA -(2000-3000) максимальное напряжение в мВ прекращения заряда, после достижения этого порога, зарядка переходит из режима постоянного тока в постоянное напряжение, типичное значение 2500мВ.

    Final curr. LiPo

    Final curr. SLA -(0-255) финальный ток заряда в % от ёмкости акум., типичное значение 3-20%.

    Maximum charge -(0-255) максимальное значение заряда в % от ёмкости акум., типичное значение 120 или 70-80. Зарядка будет прекращена, когда данная ёмкость будет передана акум.

    Запускаем программу Universal_display.exe в колонке справа выбераем порт подключения из активных (которые есть в ПК). Внимание программа Universal_display.exe не может работать одновременно с программой Universal_manager.exe т.к. при выборе порта программа занимает порт для обменна данными.

    В файле Universal_Charger.ini находятся настройки для корректного отображения данных на ПК. После каллибровки по току и напряжению считываем значения R5, R6, Current scaleс помощью программы Universal_manager.exe, потом вносим данные в файл Universal_Charger.ini только после этого данные будут правильно отображатся на экранне Universal_display.exe.

    Current scale=25000

    R 5 R 6 исчесляются в единицах Ом, значение тока 25000 типичное для датчика тока LTS-25NP

    Вкладка Display - для отображения процесса заряд/разряд. Отображается три графика - напряжение, ток и ёмкость.

    PWM drive - ШИМ транзисторных ключей при заряде или разрядке АКБ. Максимальное значение 1023 для 10-бит ШИМ.

    В правой части экрана есть кнопка “RECORD on FILE” для записи данных в файл Monitor_hhmmss_DDMMYY.txt

    В имени файла отображается время, день, месяц и год.

    Запись данных обновляется с частотой 80мс одна строка.

    При запуске заряда/разряда нажимаем кнопку “RECORD on FILE” только начиная с этого момента данные начинают записыватся в файл, при отжатии кнопки данные прекращают запись.

    Описание работы в меню прибора


    Вся информация отображается на дисплее, 16 символов на 2 строки. Для управления используется четыре кнопки:

    [+] вверх, следующее

    [- ] вниз, предыдущее

    ввод

    сброс, отмена, используется при аварийном режиме или для перезагрузки МК

    Принцип управления зарядным устройством основан на выборе профиля. Всего 12 профилей. В каждом профиле можно настроить какой тип АКБ будет заряжаться, количество и прочие электрические характеристики. Профили можно редактировать с помощью простого интерфейса программы на ПК, с последующей загрузкой в зарядное устройство. При включении прибора подождите процесс инициализации, не выключайте прибор и не предпринимайте никаких действий, просто подождите когда закончится процесс инициализации . После включения прибора необходимо пройти калибровку тока и напряжения, калибровка делается только после первого включения в дальнейшем калибровать не нужно.

    Выбор профиля

    Процесс заряда заключается в выборе профиле по которому и будем заряжать АКБ.

    Распишем, что отображено на экране:

    Pack# 1 (1-12) - номер профиля

    LiPo (NiCd, NiMh, LiPo, SLA) - тип АКБ

    x 2 (1-19) - количество АКБ соединенных последовательно, к примеру АКБ из двух LiPo каждая по 3,7В, значение будет - 2

    K 2000 (100-25500) - ёмкость АКБ в мА

    C 1.0 (0,1-25,5) - ток заряда, к примеру 1,0, АКБ ёмкостью 2000мА, будет заряжаться током 2000мА

    D 4.0 (0,1-25,5) - ток разряда, к примеру 4,0, АКБ ёмкостью 2000мА, будет разряжаться током 8000мА

    Процесс заряда

    В процессе заряда на дисплее отображаются реальные данные, а не уставки.

    Chrg LiPo - тип заряжаемого АКБ

    5.49A - текущий ток заряда АКБ

    12.345V - текущее напряжение заряда на АКБ

    2690mAh - на какую ёмкость уже заряжен АКБ

    По окончанию заряда прозвучит три коротких звуковых сигнала и на дисплее будет следующая информация:

    На дисплее отображается статус заряда, напряжение до которого заряжен АКБ и ёмкость. Вентилятор еще продолжает работать охлаждая радиатор. Нажатием кнопки ОК вентилятор отключается и осуществляется переход в основное меню.

    Статусы окончания заряда могут быть следующие:

    Standard:

    1)Для NiMh и NiCd - заряжается данные АКБ постоянным значением тока. После начального заряда 5мин устройство сравнивает напряжение АКБ с пиковым значением напряжения заряда. Дельта пик по умолчанию 5мВ для NiMh и 10мВ для NiCd.

    2)Для LiPo и SLA - на начальном этапе заряжается фиксированным током по достижению 4,2В для LiPo и 2,5В для SLA после этого переходит на заряд фиксированным напряжением. Когда значение тока станет ниже 5% по умолчанию, заряд окончен.

    Timeout - отключение АКБ по истечении времени заряда ёмкость на 120% от номинальной, этот параметр настраивается через ПК.

    Error - два варианта:

    1)обрыв цепи АКБ или батарея удалена,

    2)слишком большой ток

    User break - если вручную остановить процесс заряда нажатием на кнопку ОК.

    Состояния заряда фиксируется в памяти МК, если процесс прервался потерей питания то при включении прибора, отобразится окно приветствия, процесс зарядки продолжится с того момента на котором был окончен. Если необходимо прервать процесс нажмите кнопку “break” (сброс).

    Процесс разряда

    На экране отображаются реальные данные полученные в процессе разрядки АКБ.

    5,49А текущий ток

    12,345V текущее напряжение

    2690mAh ёмкость на которую уже разряжен акумм.

    После окончания разряда вентилятор еще работает, для останова вентилятора и возврата в меню воспользуйтесь кнопкой ОК.

    Статусы окончания разряда:

    Standard - стандартный процесс, разрядка заканчивается при разряде АКБ до напряжения:

    Error - ошибка, если ток разряда слишком большой

    User break - если пользователь нажал кнопку ОК (останов разряда)

    Состояния разряда фиксируется в памяти МК, если процесс прервался потерей питания то при включении прибора, отобразится окно приветствия, процесс разрядки продолжится с того момента на котором был окончен. Если необходимо прервать процесс нажмите кнопку “break” (сброс).

    Профильный настройки

    Выбирает кнопками вверх/вниз значение, для перехода в следующий пункт жмем ОК.

    Battery type : выбор типа АКБ:

    0 - NiCd: Nickel Cadmium

    1 - NiMh: Nickel Metal hydride

    2 - LiPo: Lithium Polymer

    3 - SLA: Sealed Lead Acid

    После выбор АКБ переходим к следующему шагу.

    Battery pack capacity : ёмкость АКБ

    Значение ёмкости используется для отключения процесса заряда, при заряде на 120% от номинальной ёмкости. После выбора переходим в следующий пункт.

    Number of cells : количество банок АКБ

    К примеру 12В свинцовый аккумулятор, чтоб зарядить выбираем SLA 6шт.

    Типичные значения напряжения:

    NiCd and NiMh: 1.2 V/банку

    LiPo: 3.7 V/банку

    SLA: 2 V/банку

    Переходим в следующий пункт.

    Charge current : выбор тока заряда (0,1-25,5)

    Выбираем коэффициент, к примеру выберем 1, это значит, что при ёмкости АКБ в 2000мА ток заряда будет 2000мА.

    Выбор тока разряда (0,1-25,5)

    Выбираем коэффициент, к примеру выберем 4, это значит, что при ёмкости АКБ в 2000мА ток разряда будет 8000мА.

    PC management , подключение к ПК

    Эта функция нужна только для редактирование данных через ПК, для редактирования дополнительных параметров “advanced parameters” . Только выбрав этот режим можно соединится с ПК, в любом другом режиме невозможно соединится с программой Universal_manager.exe. Любое нажатие на кнопку возвращает в главное меню.

    Volt calibration - калибровка напряжения

    Эта функция нужна для корректировки показаний напряжения. Подключаем параллельно АКБ вольтметр эталонный. Подключаем батарею или любой источник напряжения. Кнопками вверх/вниз установите значение на приборе равное значению эталонного вольметра, по окончанию калибровки нажмите ОК.

    При настройке пользуйтесь функцией автоповтора, нажатием на кнопку более 1сек. Если с помощью прибора не удается настроить можете настроить с помощью ПК. Запустите программу Universal_manager и в Charger parameters настройте значение R5 и R6.

    Ampere calibration - калибровка тока

    Желательно с помощью ПК настроить и зашить в МК значение чувствительности датчика тока. Запускаем программу Universal_manager и в Charger parameters выставляем значение тока. К примеру 25000 мВ/Ампер для датчика тока LTS-25NP. Подключаем эталонный амперметр к выводам прибора т.е. закорачиваем амперметром вывода прибора. Кнопками верх и вниз корректируем показания и жмем ОК. Блок питания должен выдать 2А, ток будет задан 2А автоматически.

    Дополнение:

    К примеру покажу как выставить ток чувстительности который задан в описании к датчику тока.

    При выборе датчика тока необходимо учитывать (и эксперементов с шунтом), что при токе 0 Ампер на выходе будет 2,5В (половину питающего напряжения).

    Внимание! Нет защиты от переполюсовки, при переполюсовке сгорает датчик тока.

    Вы не можете скачивать файлы с нашего сервера прошивку, исходник, програмное обеспечение, документацию.