Криптографии с нулевым разглашением. Протоколы c нулевым разглашением. Рассмотрим, как это работает

Zero-knowledge proof ) - это интерактивный протокол, позволяющий одной из сторон (проверяющему, verifier) убедиться в достоверности какого-либо утверждения (обычно математического), не получив при этом никакой другой информации от второй стороны (доказывающего, prover).

Доказательство с нулевым разглашением должно обладать тремя свойствами:

  1. Полнота : если утверждение действительно верно, то доказывающий убедит в этом проверяющего.
  2. Корректность : если утверждение неверно, то даже нечестный доказывающий не сможет убедить проверяющего за исключением пренебрежимо малой вероятности.
  3. Нулевое разглашение : если утверждение верно, то любой даже нечестный проверяющий не узнает ничего кроме самого факта, что утверждение верно.

Общая структура доказательств с нулевым разглашением

Каждый раунд или аккредитация доказательства состоит из трёх этапов. Схематично их можно изобразить следующим образом:

Сначала A выбирает из заранее определенного множества некоторый элемент, который становится её секретом (закрытый ключ). На основе этого элемента вычисляется, а затем публикуется открытый ключ. Знание секрета определяет множество вопросов, на которые А всегда сможет дать правильные ответы. Затем A выбирает случайный элемент из множества, по определенным правилам (в зависимости от конкретного алгоритма) вычисляет доказательство и затем отсылает его B . После этого B выбирает из всего множества вопросов один и просит A ответить на него (вызов ). В зависимости от вопроса, А посылает B ответ . Полученной информации B достаточно, чтобы проверить действительно ли А владеет секретом. Раунды можно повторять сколько угодно раз, пока вероятность того, что A «угадывает» ответы не станет достаточно низкой.

Такая техника называется также «разрезать и выбрать» (cut-and-choose).

Пример

Назовем проверяющую сторону Петей, а доказывающую сторону Димой (в англоязычной литературе обычно используются пары Peggy (от prover ) и Victor (от verifier ). Допустим Диме известен Гамильтонов цикл в большом графе G . Пете известен граф G , но он не знает гамильтонова цикла в нём. Дима хочет доказать Пете, что он знает гамильтонов цикл, не выдавая при этом ни самого цикла, ни какой-либо информации о нём (возможно Петя хочет купить этот гамильтонов цикл у Димы, но перед этим удостовериться, что он у Димы действительно есть).

Для этого Петя и Дима совместно выполняют несколько раундов протокола:

В каждом раунде Петя выбирает новый случайный бит, который неизвестен Диме, поэтому чтобы Дима мог ответить на оба вопроса, нужно чтобы H был в самом деле изоморфен G и Дима должен знать гамильтонов цикл в H (а значит также и в G ). Поэтому после достаточного числа раундов, Петя может быть уверен в том, что у Димы действительно есть гамильтонов цикл в G . С другой стороны, Дима не раскрывает никакой информации о гамильтоновом цикле в G . Более того, Пете сложно будет доказать кому-либо ещё, что он сам или Дима знает гамильтонов цикл в G .

Предположим, что у Димы нет гамильтонова цикла в G и он хочет обмануть Петю. Тогда Диме необходим неизоморфный G граф G" , в котором он всё-таки знает гамильтонов цикл. В каждом раунде он может передавать Пете либо H" - изоморфный G" , либо H - изоморфный G . Если Петя попросит доказать изоморфизм и был передан H , то обман не вскроется. Аналогично, если он просит показать гамильтонов цикл и был передан H" . В таком случае вероятность того, что Дима все-таки обманет Петю после n раундов, равна 1/2 n , что может быть меньше любой заранее заданной величы при достаточном числе раундов.

Предположим, что Петя не узнал гамильтонов цикл, но хочет доказать Васе, что Дима его знает. Если Петя, например, заснял на видео все раунды протокола, Вася едва ли ему поверит. Вася может предположить, что Петя и Дима в сговоре и в каждом раунде Петя заранее сообщал Диме свой выбор случайного бита, чтобы Дима мог передавать ему H для проверок изоморфизма и H" для проверок гамильтонова цикла. Таким образом без участия Димы доказать, что он знает гамильтонов цикл, можно лишь доказав, что во всех раундах протокола выбирались действительно случайные биты.

Злоупотребления

Предложено несколько способов злоупотребления доказательством с нулевым разглашением:

См. также

  • Протокол Гиллу-Кискатра

Литература

  • A. Menezes, P.van Oorschot, S. Vanstone. Handbook of Applied Cryptography. - CRC Press, 1996. - 816 с. - ISBN 0-8493-8523-7
  • Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. - М .: Триумф, 2002. - 816 с. - 3000 экз. - ISBN 5-89392-055-4

Wikimedia Foundation . 2010 .

  • Фонвизина, Наталья Дмитриевна
  • Чужумово

Смотреть что такое "Доказательство с нулевым разглашением" в других словарях:

    доказательство с нулевым разглашением конфиденциальной информации - Непроницаемое доказательство знания; доказательство обладания какой либо информацией, без разглашения этой информации. Тематики защита информации EN zero knowledge proof …

    итеративное доказательство с нулевым разглашением конфиденциальной информации - — Тематики защита информации EN zero knowledge iterative proofZKIP … Справочник технического переводчика

    не итеративное доказательство с нулевым разглашением конфиденциальной информации - НДНР — [] Тематики защита информации Синонимы НДНР EN non iterative zero knowledge proofNIZK … Справочник технического переводчика

    Криптография - Немецкая криптомашина Lorenz использовалась во время Второй мировой войны для шифрования самых секретных сообщений Криптография (от др. греч … Википедия

    Список алгоритмов - Эта страница информационный список. Основная статья: Алгоритм Ниже приводится список алгоритмов, группированный по категориям. Более детальные сведения приводятся в списке структур данных и … Википедия

    Криптограф - Немецкая криптомашина Lorenz, использовалась во время Второй мировой войны для шифрования самых секретных сообщений Криптография (от греч. κρυπτός скрытый и γράφω пишу) наука о математических методах обеспечения конфиденциальности… … Википедия

    Программируемые алгоритмы - Служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не устанавл … Википедия

    SRP - Secure Remote Password Protocol (SRPP) протокол парольной аутентификации, устойчивый к прослушиванию и MITM атаке и не требующий третьей доверенной стороны. SRP содержит некоторые элементы из других протоколов обмена ключами и идентификации … Википедия

    Протокол Фиата - Протокол Фиата Шамира это один из наиболее известных протоколов идентификации с нулевым разглашением (Zero knowledge protocol). Протокол был предложен Амосом Фиатом (англ. Amos Fiat) и Ади Шамиром (англ. Adi Shamir) Пусть А… … Википедия

    Протокол Фиата-Шамира - Протокол Фиата Шамира это один из наиболее известных протоколов идентификации с нулевым разглашением (Zero knowledge protocol). Протокол был предложен Амосом Фиатом(англ. Amos Fiat) и Ади Шамиром(англ. Adi Shamir) Пусть А знает некоторый… … Википедия

Одна из лучших сторон современной криптографии - это ее прекрасная терминология. Можно создать сколько угодно панк-групп с названиями вроде Hardcore Predicate, Trapdoor Function или Impossible Differential Cryptanalysis. Однако есть термин, который превосходит все остальные. Это Zero Knowledge Proof - «доказательство с нулевым разглашением» .

Термин «с нулевым разглашением» настолько привлекателен, что это приводит к проблемам. Люди используют его неправильно, предполагая, что нулевое разглашение - это синоним «очень-очень надежной безопасности» . Из-за этого его используют с чем угодно - в том числе с системами шифрования и сетями анонимизации - которые на самом деле не имеют никакого отношения к протоколам с нулевым разглашением.

Я пишу это, чтобы подчеркнуть, что доказательства с нулевым разглашением входят в число самых мощных инструментов, когда-либо придуманных криптографами. К сожалению, понимают их настолько же плохо. В этой серии записей я попытаюсь доступно описать, что такое доказательства с нулевым разглашением и что делает их такими особенными. Мы также рассмотрим некоторые протоколы с нулевым разглашением, используемые в реальном мире.

История нулевого разглашения

Концепцию «нулевого разглашения» впервые предложили в 1980-х исследователи из MIT Шафи Гольдвассер (Shafi Goldwasser), Сильвио Микали (Silvio Micali) и Чарльз Рекофф (Charles Rackoff). Они изучали проблемы, связанные с интерактивными системами доказательства - теоретическими системами, в которых одна сторона («Prover» - Доказывающий), обменивающаяся сообщениями со второй стороной («Verifier» - Проверяющий), пытается убедить ее в истинности какого-либо математического утверждения.*

До Гольдвассер и ее коллег работы в этой области в основном фокусировались на корректности системы доказательства. Иначе говоря, ученые рассматривали ситуации, в которых злой Доказывающий пытался «обманным путем убедить» Проверяющего поверить в ложное утверждение. Гольдвассер, Микали и Рекофф перевернули проблему с ног на голову. Вместо того чтобы беспокоиться только о Доказывающем, они решили рассмотреть, что происходит, если вы не доверяете Проверяющему.

Конкретной проблемой, которую они поставили, была утечка информации. Ученые задались вопросом, сколько дополнительной информации Проверяющий узнает в ходе доказательства помимо того факта, что утверждение истинно.

Важно отметить, что это было сделано не просто из теоретического интереса - у таких задач есть реальные сферы применения. Вот один из таких сценариев: представьте, что пользователь в реальном мире хочет войти на веб-сервер с помощью пароля. Стандартный «реалистичный» подход к этой проблеме включает сохранение хешированной версии пароля на сервере. Таким образом, вход на сервер можно рассматривать как своеобразное «доказательство» того, что хеш пароля является результатом применения хеш-функции к какому-то паролю и что клиент на самом деле знает пароль.

Большинство реальных систем реализуют это «доказательство» наихудшим способом из возможных: клиент просто передает оригинальный пароль серверу, который вычисляет хеш пароля и сравнивает его с сохраненным значением. Недостаток такого подхода очевиден: сервер узнал незашифрованный пароль клиента. Таким образом, современная парольная гигиена во многом основана на предположении, что сервер не скомпрометирован.

То, что предложили Гольдвассер, Микали и Рекофф, возродило надежду на реализацию доказательств с нулевым разглашением, доказуемо не сообщающих никакой информации, кроме одного бита, означающего «это утверждение истинно».

Пример из «реального мира»

Пока наше обсуждение довольно абстрактно, так что давайте рассмотрим «реальный» пример (немного безумного) протокола с нулевым разглашением.

Представьте, что я - телекоммуникационный магнат, развертывающий новую сотовую сеть. Структура моей сети показана на приведенном ниже рисунке. Каждая вершина в этом графе представляет радиовышку, а ребра графа указывают места, где соты перекрываются , то есть где прием сигналов может быть затруднен. К счастью, для предотвращения помех я могу назначить каждой вышке один из трех разных частотных диапазонов.

Таким образом, проблема развертывания сети заключается в том, как назначить частотные диапазоны вышкам так, чтобы никакие две перекрывающиеся соты не использовали одну частоту. Представив частотные диапазоны разными цветами, мы можем быстро предложить одно из решений проблемы:

Конечно, многие из вас уже поняли, что это просто один из экземпляров знаменитой теоретической проблемы раскраски графа тремя цветами . Эта проблема интересна тем, что для некоторых графов сложно найти решение или даже узнать, существует ли оно. На самом деле, раскраска тремя цветами - точнее говоря, выяснение того, возможно ли раскрасить конкретный граф тремя цветами - относится к классу сложности NP .

Очевидно, что наш игрушечный пример легко решить вручную, но что если это не так? Представьте, например, что моя сотовая сеть очень велика и сложна - настолько, что вычислительных ресурсов, имеющихся в моем распоряжении, недостаточно для нахождения решения. В этом случае было бы желательно отдать проблему на аутсорсинг кому-нибудь другому, у кого вычислительных ресурсов больше. Например, я могу попросить своих друзей из Google, чтобы они решили ее для меня по спецификации.

Но это приводит к проблеме.

Предположим, что Google выделит значительную долю своей вычислительной инфраструктуры на поиск способа раскраски моего графа. Разумеется, я не собираюсь платить им, пока не узнаю, что они на самом деле нашли такой способ, но в то же время Google не собирается предоставлять мне копию решения, пока я им не заплачу. Мы оказались в тупике.

Вероятно, в реальной жизни есть житейский выход из этого тупика, включающий привлечение юристов и использование эскроу-счетов, но это блог не о реальной жизни, а о криптографии. Если вы когда-либо читали какие-либо криптоисследования, то понимаете, что правильный способ решить эту проблему - это выдумать абсолютно сумасшедшее техническое решение .

Сумасшедшее техническое решение (с шляпами!)

Заметьте, что я никогда не буду абсолютно уверен в честности Google - всегда будет хотя бы крошечная вероятность того, что Google меня обманывает. Однако после большого количества итераций (а именно E ^2 ) моя уверенность вырастет до точки, в которой вероятность обмана Google пренебрежимо мала - достаточно мала, чтобы во всех практических задачах ей можно было пренебречь. В таком случае я могу безопасно отдать Google мои деньги.

Нам необходимо знать, что Google также в безопасности. Даже если я пытаюсь узнать что-то о решении Google, сохраняя заметки между запусками протокола, это не должно иметь значения. Я в тупике из-за того, что Google рандомизирует выбор цветов в разных итерациях протокола. Ограниченная информация, которую я получаю, бесполезна, и у меня нет никакого способа связать данные разных итераций.

Что делает это «нулевым разглашением»?

Ранее я заявил, что этот протокол не допускает утечки информации о решении Google, но не позволяйте мне отделаться так легко! Первое правило современной криптографии - никогда не доверять людям , которые делают такие утверждения без доказательства.

Гольдвассер, Микали и Рекофф предложили три свойства, которым должен удовлетворять любой протокол с нулевым разглашением. Неформально их можно выразить так:

  1. Полнота (completeness ). Если Google говорит правду, то в итоге сможет убедить меня (по крайней мере, с высокой вероятностью).
  2. Корректность (soundness ). Google может убедить меня в правильности решения только в том случае, если на самом деле говорит правду.
  3. Нулевое разглашение (zero knowledgeness ) . Я больше ничего не узнаю о решении Google.

Аргумент в пользу полноты мы уже обсудили. Протокол таков, что после достаточного количества повторений Google в итоге убедит меня (с пренебрежимо малой вероятностью ошибки). Продемонстрировать корректность этого протокола тоже довольно легко. Если Google когда-либо попытается обмануть меня, я почти наверняка обнаружу предательство.

Затруднения здесь вызывает третье свойство, но чтобы понять это, нам нужно провести очень странный мысленный эксперимент.

Мысленный эксперимент (с машинами времени)

Давайте начнем с сумасшедшей гипотезы. Представьте, что инженеры Google не настолько искусны, насколько кажется. Они работают над моей проблемой неделями и месяцами, но никак не могут найти решение . Когда до проверки остается 12 часов, гуглеры приходят в отчаяние. Они решают обмануть меня, чтобы я думал, что у них есть раскраска графа, хотя на самом деле ее у них нет.

Их идея состоит в том, чтобы проникнуть на семинар GoogleX и позаимствовать у Google прототип машины времени . Первоначально они планируют отправиться во времени назад на несколько лет, чтобы использовать для решения проблемы дополнительное рабочее время. К сожалению, как и большинство прототипов Google, машина времени имеет некоторые ограничения: она позволяет перемещаться во времени назад только на четыре с половиной минуты.

Таким образом, вариант с использованием машины времени для получения дополнительного рабочего времени отпадает. Тем не менее, оказывается, что даже эта очень ограниченная технология все же может быть использована с тем, чтобы обмануть меня.

Понятия не имею, что здесь происходит, но мне показалось, что картинка вполне подходит.

План чертовски прост. Поскольку Google на самом деле не знает действительной раскраски графа, Google просто раскрашивает бумагу случайными цветами, а затем поднимает шляпы. Если по чистой случайности нам попадется пара разноцветных вершин, каждый облегченно вздохнет и мы продолжим выполнять протокол. Пока все хорошо.

Однако я неизбежно рано или поздно подниму пару шляп, обнаружу две вершины одного цвета и поймаю Google на обмане. И именно здесь появляется машина времени. Когда Google находит себя в этой странной ситуации, то просто устраняет ее. Иначе говоря, специальный «гуглер» поворачивает тумблер, «перематывает» время примерно на четыре минуты и команда Google полностью перекрашивает граф новым случайным решением. После этого они снова запускают время, позволяя мне сделать новую попытку.

По сути, машина времени позволяет Google «восстанавливаться» от любых неприятностей, которые происходят во время выполнения их фальшивого протокола, из-за чего мне все кажется нормальным. Поскольку удачная попытка оспорить протокол происходит лишь примерно в 1/3 попыток, ожидаемое время выполнения протокола (с точки зрения Google) лишь умеренно больше, чем время выполнения честного протокола. Что касается меня, то я даже не подозреваю, что происходят путешествия во времени.

Последний момент наиболее важен. На самом деле с моей точки зрения незнание того, что задействована машина времени, приводит к точно такому же взаимодействию, что и реальность. Статистически они идентичны. И все же, снова стоит отметить, что в версии с машиной времени у Google совершенно нет информации о том, как раскрасить граф.

К чему это все?

То, что мы только что рассмотрели - это пример симуляции . Заметьте, что в мире, где время движется только вперед и никто не может обмануть меня с помощью машины времени, протокол со шляпами корректен , то есть после E ^2 раундов я должен быть убежден (за вычетом пренебрежимо малой вероятности), что граф на самом деле можно раскрасить и что Google располагает действительным решением.

Мы только что показали, что если время течет не только вперед - точнее говоря, если Google может «перематывать» мое представление о времени - то Google может подделать действительный запуск протокола даже без информации о фактической раскраск e графа.

Какова с моей точки зрения разница между двумя вариантами протокола? Если рассматривать их статистическое распределение, разницы нет никакой - оба сообщают примерно одинаковый объем полезной информации.

Хотите - верьте, хотите - нет, но это доказывает кое-что очень важное.

Предположим, что у меня (Проверяющего) есть некая стратегия, которая «извлекает» полезную информацию о раскраске Google после наблюдения за выполнением честного протокола. Тогда моя стратегия должна одинаково хорошо работать и в тех случаях, когда меня обманывают с помощью машины времени. С моей точки зрения запуски протокола статистически идентичны - я физически не могу определить разницу.

Таким образом, если объем информации, который я могу извлечь, в «реальном эксперименте» и «эксперименте с машиной времени» идентичен, но объем информации, которую предоставляет Google в эксперименте с «машиной времени», в точности нулевой, это предполагает, что даже в реальном мире протокол должен не выдавать никакой полезной информации. Остается только показать, что у информатиков есть машины времени. Да, у нас они есть! (Это тщательно скрываемый секрет.)

Избавляемся от шляп (и машин времени)

Конечно, на самом деле мы не хотим выполнять протокол с шляпами и даже у Google нет настоящей машины времени (наверное).

Чтобы связать все вместе, нам сначала нужно перенести наш протокол в цифровой мир. Это требует, чтобы мы сконструировали цифровой эквивалент «шляпы» - что-то, что одновременно скрывает цифровое значение и при этом «привязывает» создателя к нему («обязывает»), чтобы он не мог передумать постфактум.

К счастью, у нас есть идеальный инструмент для этого, который называется цифровой схемой обязательства . Схема обязательства позволяет одной стороне «выразить обязательство» для конкретного сообщения, сохранив его при этом в «секретном конверте», а затем позднее «раскрыть» конверт с обязательством, чтобы показать, что внутри. Обязательства можно создавать из раличных ингредиентов, включая (надежные) криптографические хеш-функции.***

Со схемой обязательства у нас есть все, что нужно для электронного выполнения протокола с нулевым разглашением. Доказывающий сначала кодирует расцветку вершин как набор цифровых сообщений (например, с помощью чисел 0, 1, 2), а затем генерирует для каждого из них цифровые обязательства. Эти обязательства пересылаются Проверяющему. Когда Проверяющий оспаривает решение для какого-то ребра, Доказывающий просто обнародует значения для обязательств, соответствующих двум вершинам.

Так мы устранили шляпы, но как доказать, что это протокол с нулевым разглашением?

К счастью, теперь мы в цифровом мире, и нам не нужна реальная машина времени для доказательства утверждений об этом протоколе. Главная хитрость в том, чтобы указать, что протокол будет работать не между людьми , а между двумя разными компьютерными программами (или, выражаясь более формальным языком, вероятностными машинами Тьюринга).

Теперь мы можем доказать следующую теорему. Если бы удалось создать компьютерную программу (для Проверяющего), извлекающую полезную информацию после участия в запуске протокола, можно было бы использовать с этой программой «машину времени», чтобы программа извлекла тот же объем полезной информации из «поддельного» запуска протокола, когда Доказывающий не предоставляет никакой информации.

И, поскольку мы теперь говорим о компьютерных программах , очевидно, что перемотка времени вовсе не является экстраординарной возможностью. На самом деле, мы перематываем компьютерные программы все время. Возьмем для примера ПО для виртуальных машин с функцией создания снимков.

Пример перемотки снимков виртуальных машин. Первоначальная виртуальная машина воспроизводится вперед, возвращается к первоначальному снимку, а затем выполняется другая ветвь.

Даже если у вас нет хитрого ПО для виртуальных машин, любую компьютерную программу можно «перемотать» к более раннему состоянию, просто снова запустив ее с начала и передав ей в точности тот же ввод. Если ввод - включая все случайные числа - фиксирован, программа всегда будет следовать по одному и тому же пути выполнения. Вы можете перемотать программу, просто запустив ее с начала и «форкнув» ее выполнение по достижении некоторой желаемой точки.

В конечном итоге мы получаем следующую теорему. Если существует какая-либо компьютерная программа Проверяющего, которая успешно извлекает информацию, интерактивно выполняя этот протокол с некоторым Доказывающим, мы можем просто использовать хитрость с перемоткой, чтобы выразить обязательство для случайного решения, а затем «обмануть» Проверяющего, перематывая программу, пока не пройдем испытание. Имеет место та же логика, что и выше: если бы такой Проверяющий преуспел в извлечении информации после выполнения реального протокола, то он мог бы извлечь тот же объем информации из симулированного протокола с перемоткой. Но поскольку симулированному протоколу не передается никакая информация, то и извлечь нечего. Следовательно, объем информации, которую Проверяющий может извлечь, равен нулю.

Хорошо, и что же все это означает?

Итак, по приведенному выше анализу мы знаем, что протокол полон и корректен. Аргумент в пользу корректности выстаивает всегда, когда мы знаем, что никто не манипулирует временем - т. е. что программа Проверяющего выполняется нормально и никто не перематывает его выполнение.

В то же время протокол обеспечивает и нулевое разглашение. Чтобы доказать это, мы показали, что любая программа Проверяющего, успешно извлекающая информацию, должна также быть способна извлечь информацию из запуска протокола с перемоткой, когда никакая информация изначально недоступна. Это приводит к очевидному противоречию и говорит нам, что утечка информации при выполнении такого протокола невозможна в обеих ситуациях.

У всего этого есть важное преимущество. Поскольку любой легко может «подделать» запись протокола даже после того как система Google докажет мне, что у нее есть решение, я не могу заново воспроизвести запись протокола, чтобы доказать что-либо кому-либо другому (скажем, судье). Это объясняется тем, что у судьи не было бы никакой гарантии, что видео было записано честно и что я не отредактировал его так же, как могла сделать система Google с помощью машины времени. Это означает, что сама запись протокола не содержит информации. Протокол имеет смысл только в том случае, если я сам участвовал в нем и уверен, что это происходило в реальном времени.

Доказательства для всех NP!

Если вы дочитали до этого места, я уверен, что вы готовы к большим новостям. А именно, вы готовы узнать, что трехцветные сотовые сети не такая уж интересная проблема - по крайней мере, сама по себе.

Проблема 3-х цветов интересна в первую очередь тем, что она относится к классу NP-полных . Выражаясь неформально, в этих проблемах удивительно то, что любую другую проблему из класса NP можно преобразовать в экземпляр этой проблемы.

Этот результат одним махом - благодаря Голдрайху , Микали и Видждерсону - доказывает, что «эффективные» доказательства с нулевым разглашением существуют для широкого класса полезных утверждений, многие из которых гораздо более интересны, чем назначение частот сотовым сетям. Вы просто находите утверждение (в классе NP), которое хотите доказать, такое как наш приведенный выше пример хеш-функции, а затем преобразуете его в экземпляр проблемы 3-х цветов. После этого вы просто запускаете цифровую версию протокола с шляпами.

Подведем итоги

Конечно, на самом деле запускать этот протокол для интересных утверждений было бы очень странно и глупо, потому что это требовало бы выполнения огромного объема работы. Теоретически это «эффективно», потому что общие затраты на доказательства росли бы полиномиально в зависимости от размера входных данных, но на практике они были бы совершенно другими.

Таким образом, мы пока показали лишь, что такие доказательства возможны . Сам же поиск доказательств, достаточно практичных для использования в реальном мире, остается на нашу долю.

В других сообщениях я расскажу о некоторых из них - а именно эффективных доказательствах разных полезных утверждений. Я приведу некоторые примеры (из реальных приложений), где такие приемы были использованы. Также по запросу одного из читателей я расскажу, почему мне так не нравится протокол SRP (Secure Remote Password).

Примечания

* Формально цель интерактивного доказательства - убедить Проверяющего, что конкретная строка принадлежит некоторому языку. Обычно Доказывающий очень (неограниченно) могуществен, а Проверяющий ограничен в вычислительных ресурсах.

** Этот пример основан на оригинальном решении Гольдвассер, Микали и Рекоффа, а обучающий пример со шляпами - на объяснении, которое дал Сильвио Микали. Я отвечаю только за ошибки, если таковые найдутся.

*** Простой пример обязательства можно построить с использованием хеш-функции. Чтобы создать обязательство для значения «x», просто сгенерируйте некоторую (достаточно длинную) строку случайных чисел, которую мы будем называть «солью» (salt), и выведите обязательство C = Hash (salt || x ) . Чтобы обнародовать обязательство, вы просто демонстрируете «x» и соль. Любой может убедиться, что оригинальное обязательство действительно, пересчитав хеш. Это безопасно, если выполнены некоторые (умеренно строгие) требования к самой функции.

Мэтью Грин (Matthew Green)

Использование доказательства с нулевым разглашением конфиденциальной информации можно пояснить на конкретном примере. Предположим, что имеется пещера. Вход в пещеру находится в точке А, а в точке В пещера разветвляется на две половины - С и D. У пещеры есть секрет: только тот, кто знает волшебные слова, может открыть дверь, расположенную между С и D.

Антону волшебные слова известны, Борису - нет. Антон хочет доказать Борису, что знает волшебные слова, но так, чтобы Борис по-прежнему оставался в неведении относительно этих слов. Тогда Антон может воспользоваться следующим протоколом:

1. Борис стоит в точке А.

2. По своему выбору Антон подходит к двери либо со стороны точки С,

либо со стороны точки D.

3. Борис перемещается в точку В.

4. Борис приказывает Антону появиться или через левый проход к двери,

или через правый.

5. Антон подчиняется приказу Бориса, в случае необходимости используя

волшебные слова, чтобы пройти через дверь.

6. Шаги 1-5 повторяются n раз, где n - параметр протокола.

Допустим, что у Бориса есть видеокамера, с помощью которой он фиксирует все исчезновения Антона в недрах пещеры и все его последующие появления. Если Борис покажет записи всех n экспериментов, произведенных им совместно с Антоном, могут ли эти записи послужить доказательством знания Антоном волшебных слов для другого человека (например, для Владимира)?

Вряд ли. Владимир никогда не сможет удостовериться в том, что Антон каждый раз предварительно не сообщал Борису о своих намерениях, чтобы потом Борис приказывал ему выходить именно с той стороны двери, с какой Антон зашел. Или что из сделанной видеозаписи не вырезаны все неудачные эксперименты, в ходе которых Антон не смог выполнить распоряжения Бориса.

Это означает, что Борис не в состоянии убедить Владимира, лично не присутствовавшего при проведении экспериментов в пещере, в том, что Антон действительно подтвердил свое знание секрета. А значит использованный Антоном протокол доказательства характеризуется именно нулевым разглашением конфиденциальной информации. Если Антон не знает волшебные слова, открывающие дверь в пещере, то, наблюдая за Антоном, не сможет ничего узнать и Борис. Если Антону известны волшебные слова, то Борису не поможет даже подробная видеозапись проведенных экспериментов. Во-первых, поскольку при ее просмотре Борис увидит только то, что уже видел живьем. А во-вторых, потому что практически невозможно отличить сфальсифицированную Борисом видеозапись от подлинной.

Протокол доказательства с нулевым разглашением срабатывает в силу того, что не зная волшебных слов, Антон может выходить только с той стороны, с которой зашел. Следовательно лишь в 50% всех случаев Антон сумеет обмануть Бориса, догадавшись, с какой именно стороны тот попросит его выйти. Если количество экспериментов равно n, то Антон успешно пройдет все испытания только в одном случае из 2 n . На практике можно ограничиться n=16. Если Антон правильно исполнит приказ Бориса во всех 16-ти случаях, значит он и правда знает секрет волшебных слов.

Пример с пещерой является наглядным, но имеет существенный изъян. Борису значительно проще проследить, как в точке В Антон поворачивает в одну сторону, а потом появляется с противоположной стороны. Протокол доказательства с нулевым разглашением здесь попросту не нужен.

Поэтому предположим, что Антону известны не какие-то там волшебные слова, типа “Сезам, откройся”. Нет, Антон владеет более интересной информацией - он первым сумел найти решение этой труднорешаемой задачи. Чтобы доказать данный факт Борису, Антону совсем не обязательно всем и каждому демонстрировать свое решение. Ему достаточно применить следующий протокол доказательства с нулевым разглашением конфиденциальной информации:

1. Антон использует имеющуюся у него информацию и сгенерированное

случайное число, чтобы свести труднорешаемую задачу к другой труднорешаемой задаче, изоморфной исходной задаче. Затем Антон решает эту новую задачу.

2. Антон задействует протокол предсказания бита для найденного на

шаге 1 решения, чтобы впоследствии, если у Бориса возникнет необходимость ознакомиться с этим решением, Борис мог бы достоверно убедиться, что предъявленное Антоном решение действительно было получено им на шаге 1.

3. Антон показывает новую труднорешаемую задачу Борису,

4. Борис просит Антона или доказать, что две труднорешаемые задачи

(старая и новая) изоморфны, или предоставить решение, которое Антон должен был найти на шаге 1, и доказать, что это действительно решение задачи, к которой Антон свел исходную задачу на том же шаге.

5. Антон выполняет просьбу Бориса.

6. Антон и Борис повторяют шаги 1-6 n раз, где n - параметр

протокола.

Труднорешаемые задачи, способ сведения одной задачи к другой, а также случайные числа должны по возможности выбираться так, чтобы у Бориса не появилось никакой информации относительно решения исходной задачи даже после многократного выполнения шагов протокола.

Не все труднорешаемые задачи могут быть использованы при доказательстве с нулевым разглашением конфиденциальной информации, однако большинство из них вполне пригодны для таких целей. Примерами могут служить отыскание в связном графе цикла Гамильтона (замкнутого пути, проходящего через все вершины графа только один раз) и определение изоморфизма графов (два графа изоморфны, если они отличаются только названиями своих вершин).

Одна из основных задач криптографии представляет собой двустороннюю интерактивную игру, в которой один участник (доказывающая сторона) доказывает другому участнику (проверяющей стороне) истинность утверждения, не раскрывая сущности доказательства. В этом случае проверяющий не может самостоятельно оценить истинность утверждения, поскольку ему неизвестна информация, доступная доказывающему. Эта игра называется протоколом (системой) интерактивного доказательства или IP-протоколом (interactive proof - IP). Доказательство, осуществляемое IP-протоколом, можно назвать “секретным доказательством” (“proof in the dark”). Секретность этого доказательства состоит в том, что, во-первых, проверяющая сторона, убедившись в истинности доказываемого утверждения, не способна самостоятельно повторить доказательство, и, во-вторых, после завершения протокола никто из посторонних не способен понять ни одного сообщения, которыми обменивались доказывающая и проверяющая стороны.
Представим себе, что утверждение, которое необходимо доказать, не раскрывая сущности доказательства, является решением какой-либо знаменитой нерешенной математической задачи. В этом случае доказывающая сторона, опасающаяся плагиата, может пожелать скрыть технические детали доказательства от потенциально нечестного рецензента. Для этого она должна провести “секретное” доказательство, убедив рецензента (играющего роль проверяющей стороны в IP-протоколе) в корректности выводов, не давая никакой дополнительной информации.
Во многих реальных приложениях существуют намного более серьезные основания для проведения “секретных” доказательств. Как правило, IP-протоколы применяются для аутентификации сущностей. В отличие от обычных протоколов аутентификации , в которых пользователи ставят цифровые подписи, в IР-протоколе доказывающая сторона, подлежащая аутентификации , не желает, чтобы сообщения стали доступными кому-либо, кроме проверяющей стороны, и выполняет “секретную” аутентификацию . Кроме того, IP-протоколы часто применяются для того, чтобы доказать, что часть скрытой информации имеет определенную структуру. Это необходимо в некоторых секретных приложениях (например, при проведении электронных аукционов), в которых скрытый номер (лот) должен находиться в допустимом диапазоне (например, необходимо доказать, что х > у без раскрытия значений и , представляющих собой предложения цены).
Рассматривая IP-протоколы, необходимо изучить два вопроса.

  • Вопрос 1. Сколько информации получит проверяющая сторона в ходе интерактивного доказательства ?
  • Вопрос 2. Сколько раундов должна выполнить доказывающая сторона, чтобы убедить проверяющего?

Идеальным ответом на первый вопрос был бы “нисколько”, или “нуль”. IP- протокол, обладающий таким свойством, называется протоколом с нулевым разглашением или ZK-протоколом (zero-knowledge - ZK). Второй вопрос важен не только для практических приложений, но и для теории вычислительной сложности, поскольку решение этой проблемы связано с получением более низкой оценки сложности.

История развития

Доказательство нулевым разглашением был придумано и разработано следующими учеными: Шафи Гольдвассером, Сильвио Микалием и Чарльз Реккофом, и опубликовано ими в статье «Знание и сложность интерактивной системы с доказательством» в 1985 году. Эта работа представила иерархию интерактивных систем с доказательством, основываясь на объеме информации о доказательстве, которой необходимо передать от доказывающего до проверяющего. Ими так же было предложено первое доказательство конкретно поставленного доказательства с нулевым разглашением - квадратичного вычета по модулю m. Впоследствии, дополнив свою работу, они выиграли первую премию Геделя в 1993 году.
Продолжение...

Нулевое разглашение

Вычислительная модель

Обозначим основную модель протокола интерактивных доказательств через (Р,V), где Р - доказывающая (prover), а V - проверяющая сторона (verifier). Как правило, протокол (Р,V) предназначен для проверки принадлежности определенного предложения языку, заданному над алфавитом {0,1}*.
Пусть L - язык над алфавитом {0,1}*. Стороны Р и V получают образец хϵL, представляющий собой общие входные данные (common input). Доказательство принадлежности образца обозначается как (Р,V)(x). Обе стороны протокола связаны каналом связи, через который они обмениваются информацией.
Результат работы протокола записывается в следующем виде: (Р,V)(x) ϵ {Принять, Отклонить}.
Эти два значения означают, что проверяющая сторона либо подтверждает, либо опровергает утверждение хϵL, высказанное доказывающей стороной Р. Поскольку система (Р,V) является вероятностной, при каждом х результат (Р,V)(x) является случайной величиной, зависящей от общих входных данных х, закрытых входных данных (private input) пользователя Р и некоторых случайных входных данных (random input), общих для пользователей Р и Q.
Поскольку протокол (Р,V) является двусторонней игрой, естественно предположить, что каждая сторона стремится получить дополнительное преимущество. С одной стороны, доказывающая сторона Р должна быть заинтересована в результате принятия x, даже если оно не принадлежит L. Доказывающая сторона, руководствующаяся такой жульнической стратегией (cheating prover), обозначается как Р’. С другой стороны, проверяющая сторона V должна быть заинтересована в раскрытии информации о закрытых входных данных игрока Р. Проверяющая сторона, следующая такой нечестной стратегии (dishonest verifier), обозначается как V’.
Предположим, что на вопрос 1 существует идеальный ответ (Р,V) - протокол с нулевым разглашением, т.е. пользователь V (или V’) убеждается в корректности утверждения пользователя Р, не узнав ничего нового о его закрытых входных данных.
Для того чтобы протокол (Р,V) обладал этим свойством, необходимо ограничить вычислительную мощь пользователя V (или V’) полиномом, зависящим от размера его входной информации. Очевидно, что без этого ограничения нельзя гарантировать нулевое разглашение, поскольку пользователь V, обладающий неограниченными вычислительными ресурсами может самостоятельно раскрыть секретные входные данные пользователя Р.

Формальное определение протоколов интерактивного доказательства

Дадим определение протокола интерактивного доказательства . Пусть L - язык, заданный над алфавитом (0,1}*. IР-протокол (Р,V) называется системой интерактивного доказательства для языка L, если

и

где числа Ɛ и ϐ являются константами, удовлетворяющими условиям Ɛϵ(1/2;1], ϐϵ}