Перевести из одной системы. Быстрый перевод числа из десятичной системы счисления в двоичную

Цели урока:

  • повторить изученный материал по теме система счисления;
  • научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот;
  • освоить принципы перевода чисел из одной системы в другую;
  • развивать логическое мышление.

Ход урока

Вначале урока краткое повторение и проверка домашнего задания..

В каком виде представлена числовая информация в памяти компьютера?

Для чего используются системы счисления?

Какие виды систем счисления вы знаете? Привести свои примеры.

Чем отличаются позиционные системы от непозиционных?.

Цель нашего урока научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот. Но в начале мы рассмотрим, как можно

представить любое целое неотрицательное чисело:

В позиционных системах значение записи целого числа определяется по следующему правилу: пусть a n a n-1 a n-2 …a 1 a 0 - запись числа A, а i – цифры, тогда

где p - целое число большее 1, которое называется основанием системы счисления

Для того, чтобы при заданном p любое неотрицательное целое число можно было бы записать по формуле (1) и притом единственным образом, числовые значения различных цифр должны быть различными целыми числами, принадлежащими отрезку от 0 до p-1.

1) Десятичная система

цифры: 0,1,2,3,4,5,6,7,8,9

число 5735 = 5·10 3 +7·10 2 +3·10 1 +8·10 0

2) Троичная система

цифры: 0,1,2

число 201 3 = 2·3 2 +0·3 1 +1·3 0

Замечание: нижним индексом в записи числа обозначается основание системы счисления, в которой записано число. Для десятичной системы счисления индекс можно не писать.

Представление отрицательных и дробных чисел:

Во всех позиционных системах для записи отрицательных чисел так же как и в десятичной системе используется знак ‘–‘. Для отделения целой части числа от дробной используется запятая. Значение записи a n a n-1 a n-2 …a 1 a 0 , a -1 a -2 …a m-2 a m-1 a m числа A определяется по формуле, являющейся обобщением формулы (1):

75,6 = 7·10 1 +5·10 0 +6·10 –1

–2,314 5 = –(2·5 0 +3·5 –1 +1·5 –2 +4·5 –3)

Перевод чисел из произвольной системы счисления в десятичную:

Следует понимать, что при переводе числа из одной системы счисления в другую количественное значение числа не изменяется, а меняется только форма записи числа, так же как при переводе названия числа, например, с русского языка на английский.

Перевод чисел из произвольной системы счисления в десятичную выполняется непосредственным вычислением по формуле (1) для целых и формуле (2) для дробных чисел.

Перевод чисел из десятичной системы счисления в произвольную.

Перевести число из десятичной системы в систему с основанием p – значит найти коэффициенты в формуле (2). Иногда это легко сделать простым подбором. Например, пусть нужно перевести число 23,5 в восьмеричную систему. Нетрудно заметить, что 23,5 = 16+7+0,5 = 2·8+7+4/8 = 2·8 1 +7·8 0 +4·8 –1 =27,48. Понятно, что не всегда ответ столь очевиден. В общем случае применяется способ перевода отдельно целой и дробной частей числа.

Для перевода целых чисел применяется следующий алгоритм (полученный на основании формулы (1)):

1. Найдем частное и остаток от деления числа на p. Остаток будет очередной цифрой ai (j=0,1,2 …) записи числа в новой системе счисления.

2. Если частное равно нулю, то перевод числа закончен, иначе применяем к частному пункт 1.

Замечание 1. Цифры ai в записи числа нумеруются справа налево.

Замечание 2. Если p>10, то необходимо ввести обозначения для цифр с числовыми значениями, большими или равными 10.

Перевести число 165 в семеричную систему счисления.

165:7 = 23 (остаток 4) => a 0 = 4

23:7 = 3 (остаток 2) => a 1 = 2

3:7 = 0 (остаток 3) => a 2 = 3

Выпишем результат: a 2 a 1 a 0 , т.е. 3247.

Выполнив проверку по формуле (1), убедимся в правильности перевода:

3247=3·7 2 +2·7 1 +4·7 0 =3·49+2·7+4 = 147+14+4 = 165.

Для перевода дробных частей чисел применяется алгоритм, полученный на основании формулы (2):

1. Умножим дробную часть числа на p.

2. Целая часть результата будет очередной цифрой am (m = –1,–2, –3 …) записи числа в новой системе счисления. Если дробная часть результата равна нулю, то перевод числа закончен, иначе применяем к ней пункт 1.

Замечание 1. Цифры a m в записи числа располагаются слева направо в порядке возрастания абсолютного значения m.

Замечание 2. Обычно количество дробных разрядов в новой записи числа ограничивается заранее. Это позволяет выполнить приближенный перевод с заданной точностью. В случае бесконечных дробей такое ограничение обеспечивает конечность алгоритма.

Перевести число 0,625 в двоичную систему счисления.

0,625·2 = 1,25 (целая часть 1) => a -1 =1

0,25·2 = 0,5 (целая часть 0) => a- 2 = 0

0,5·2 = 1,00 (целая часть 1) => a- 3 = 1

Итак, 0,62510 = 0,1012

Выполнив проверку по формуле (2), убедимся в правильности перевода:

0,1012=1·2 -1 +0·2- 2 +1·2 -3 =1/2+1/8 = 0,5+0,125 = 0,625.

Перевести число 0,165 в четверичную систему счисления, ограничившись четырьмя четверичными разрядами.

0,165·4 = 0,66 (целая часть 0) => a -1 =0

0,66·4 = 2,64 (целая часть 2) => a -2 = 2

0,64·4 = 2,56 (целая часть 2) => a -3 = 2

0,56·4 = 2,24 (целая часть 2) => a -4 = 2

Итак, 0,16510 ” 0,02224

Выполним обратный перевод, чтобы убедиться, что абсолютная погрешность не превышает 4–4:

0,02224 = 0·4 -1 +2·4 -2 +2·4 -3 +2·4 -4 = 2/16+2/64+2/256 = 1/8+1/32+1/128 = 21/128 = 0,1640625

|0,1640625–0,165| = 0,00094 < 4–4 = 0,00390625

Перевод чисел из одной произвольной системы в другую

В этом случае сначала следует выполнить перевод числа в десятичную систему, а затем из десятичной в требуемую.

Особым способом выполняется перевод чисел для систем с кратными основаниями.

Пусть p и q – основания двух систем счисления. Будем называть эти системы системами счисления с кратными основаниями, если p = qn или q = pn, где n – натуральное число. Так, например, системы счисления с основаниями 2 и 8 являются системами счисления с кратными основаниями.

Пусть p = qn и требуется перевести число из системы счисления с основанием q в систему счисления с основанием p. Разобьем целую и дробную части записи числа на группы по n последовательно записанных цифр влево и вправо от запятой. Если количество цифр в записи целой части числа не кратно n, то надо дописать слева соответствующее количество нулей. Если количество цифр в записи дробной части числа не кратно n, то нули дописываются справа. Каждая такая группа цифр числа в старой системе счисления будет соответствовать одной цифре числа в новой системе счисления.

Переведем 1100001,111 2 в четверичную систему счисления.

Дописав нули и выделив пары цифр, получим 01100001,11102.

Теперь выполним перевод отдельно каждой пары цифр, пользуясь пунктом Перевод чисел из одной произвольной системы в другую.

Итак, 1100001,1112 = 01100001,11102 = 1201,324.

Пусть теперь требуется выполнить перевод из системы с большим основанием q, в систему с меньшим основанием p, т.е. q = p n . В этом случае одной цифре числа в старой системе счисления соответствует n цифр числа в новой системе счисления.

Пример: Выполним проверку предыдущего перевода числа.

1201,324 = 1100001,11102=1100001,1112

В шестнадцатеричной системе есть цифры с числовыми значениями 10,11,12, 13,14,15. Для их обозначения используют первые шесть букв латинского алфавита A, B, C, D, E, F.

Приведем таблицу чисел от 0 до 16, записанных в системах счисления с основаниями 10, 2, 8 и 16.

Число в десятичной системе счисления 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
В восьмеричной 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
В двоичной 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000
В шестнадцатеричной 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

Для записи шестнадцатеричных цифр можно использовать также строчные латинские буквы a-f.

Пример: Переведем число 110101001010101010100,11 2 в шестнадцатеричную систему счисления.

Воспользуемся кратностью оснований систем счисления (16=2 4). Сгруппируем цифры по четыре, дописав, слева и справа нужное количество нулей

000110101001010101010100,1100 2

и, сверяясь с таблицей, получим: 1A9554,C 16

Вывод:

В какой системе счисления лучше записывать числа – это вопрос удобства и традиций. С технической точки зрения, в ЭВМ удобно использовать двоичную систему, так как в ней для записи числа используются только две цифры 0 и 1, которые можно представить двумя легко различимыми состояниями “нет сигнала ” и “есть сигнал”.

А человеку, напротив, неудобно иметь дело с двоичными записями чисел из-за того, что они более длинные, чем десятичные и в них много повторяющихся цифр. Поэтому, при необходимости работать с машинными представлениями чисел используют восьмеричную или шестнадцатеричную системы счисления. Основания этих систем – целые степени двойки, и поэтому числа легко переводятся из этих систем в двоичную и обратно.

Записываем задание на дом:

а) Запишите дату рождения всех членов вашей семьи в различных системах счисления.

б) Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111,011 2 ;

Самой короткой системой счисления является двоичная. Она полностью основана на позиционной форме записи числа. Основной характеристикой считается принцип удвоения цифры при выполнении перехода от определённой позиции к последующей. Из одной системы счисления в другую можно осуществить перевод как при помощи специальной программы, так и вручную.

Историческое признание

Появление двоичной СС в истории связано с учёным математиком В.Г. Лейбницем. Именно он впервые заговорил о правилах выполнения операций с числовыми значениями данного рода. Но первоначально этот принцип остался невостребованным . Мировое признание и применение алгоритм получил на заре возникновения вычислительных машин.

Удобство и несложность выполнения операций привели к необходимости более детального изучения данного подраздела арифметики, который стал незаменимым при развитии компьютерной технологии с программным обеспечением. Впервые такие механизмы появились на немецком и французском рынках.

Внимание! Конкретную точку над превосходством двоичной системы по отношению десятичной, именно в данной отрасли, было поставлено в 1946 году и обосновано в статье А. Бекса, Х. Гольдстайна и Дж.Фон Неймана.

Перевод числа из десятичной системы счисления в двоичную.

Особенности двоичной арифметики

Вся двоичная СС основана на применении только двух символов , которые очень точно совпадают с особенностями цифровой схемы. Каждый из символов отвечает за определённое действие, которое зачастую подразумевает два состояния:

  • наличие отверстия или его отсутствие, к примеру, перфокарты или перфоленты;
  • на магнитных носителях отвечает за состояние намагничивания или размагничивания;
  • по уровню сигнала, высокий или низкий.

В науке, в которой применяется СС, введена определённая терминология, суть ее состоит в следующем:

  • Бит – двоичный разряд , который состоит из двух составляющих, несущих в себе определённый смысл. Размещённый слева, определяется как старший и является приоритетным, а справа – младшим, являющийся менее весомым.
  • Байт – это единица, которая состоит из восьми битов .

Многие модули воспринимают и обрабатывают информацию порциями или словами . Каждое слово имеет разный вес и может состоять из 8-ми, 16-ти или 32-х битов .

Правила переводов из одной системы в другую

Одним из важнейших факторов арифметики машин является перевод из одной СС в другую . Поэтому обратим внимание на основные алгоритмы выполнения процесса, который покажет, как перевести число в двоичную систему.

Переводим десятичную систему в двоичную

Первоначально обратимся к вопросу, как осуществить перевод системы из десятичной в двоичную систему счисления. Для этого существует правило перевода из десятичных чисел в двоичный код, которое подразумевает математические действия .

Необходимо число, записанное в десятичном виде разделить на 2 . Деление выполнять до тех пор, пока в частном не останется единица . Если необходима двоичная система счисления перевод осуществляется так:

186:2=93 (ост. 0)

93:2=46 (ост. 1)

46:2=23 (ост. 0)

23:2=11 (ост. 1)

11:2=5 (ост. 1)

5:2=2 (ост.1)

После того, как процесс деления закончен, то единицу в частном и все остатки записываем последовательно в обратном делению порядке . То есть, 18610=1111010. Правило перевода десятичных чисел в СС надо соблюдать всегда.

Перевод числа из десятичной системы в двоичную.

Перевод из десятичной СС в восьмеричную

Аналогичный процесс проводится при переводе из десятичной СС в восьмеричную. Его ещё называют «правилом замещения ». Если в предыдущем примере деление данных осуществлялось на 2, то здесь необходимо делить на 8. Алгоритм перевода числа X10 в восьмеричную состоит из следующих шагов:

  1. Число X10 начинают делить на 8. Полученное частное берём для следующего деления, а остаток записывается, как бит младшего порядка .
  2. Продолжаем деление до тех пор, пока не получим в результат частного равного нулю или остаток, который по своему значению меньше восьми . При этом все остатки записываем, как младшие порядки бита .

К примеру, необходимо перевести число 160110 в восьмеричное.

1601:8=200 (ост. 1)

200:8=25 (ост. 0)

25:8=3 (ост.1)

Итак, получим: 161010=31018.

Перевод из десятичной системы в восьмеричную.

Записываем десятичное число шестнадцатеричным

Перевод из десятичной в шестнадцатиричную СС осуществляется аналогично с использованием системы замещения. Но кроме цифр применяют ещё и буквы латинского алфавита A, B, C, D, E, F. Где A обозначает остаток 10, а F остаток 15. Десятичное число делят на 16. К примеру, переводим 10710 в шестнадцатеричную:

107:16=6 (ост. 11 – заменяем В)

6 – меньше, чем шестнадцать. Деление прекращаем и записываем 10710=6В16.

Переходим из другой системы в двоичную

Следующий вопрос, как преобразовать из восьмеричной в двоичную запись числа. Перевод чисел из любой системы в двоичную выполняется достаточно просто. Помощником в этом деле выступает таблица для систем счисления .

Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

  • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
  • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
  • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


Аналогично и для других чисел "2 в степени".

Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

  • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
  • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


Аналогичен перевод и для других чисел "2 в степени-1".

Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

Если число больше , то решаем так:

Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

16=2 4 . 16 10 =10000 2 .

3 10 =11 2 .

19 10 =10000 2 +11 2 =10011 2 .

Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

31 10 =11111 2 .

2 10 =10 2 .

29 10 =11111 2 -10 2 =11101 2

Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
512=2 9 . 512 10 =1000000000 2 .
16=2 4 . 16 10 =10000 2 .
Теперь сложим столбиком:

В данной статье я расскажу основы компьютерной техники - это двоичная система. Это самый низкий уровень, это числа по которым работает компьютер. И вы узнаете как переводить из одной системы

Таблица 1 - Представление чисел в различных системах
исчисление (начало)

Системы счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

двоично-десятичная

Для того чтобы перевести из десятичной в двоичную, можно использовать два варианта.

1) К примеру число 37 нужно перевести из десятичной системы в двоичную, то нужно его делить на два, а затем проверять остаток от деления. Если остаток нечетный, то в низу мы подписывает единицу и следующий цикл деления идет через четное число, если останок от деления четный, то пишим ноль. На конце обязательно должна получиться 1. А теперь полученный результат мы преобразуем в двоичный, причем число идет справа на лево.

Пошагово: 37 - это число нечетное, значит 1 , затем 36/2 = 18. Число четное, значит 0 . 18/2 = 9 число нечетное, значит 1 , затем 8/2 = 4. Число четное, зачит 0 . 4/2 = 2, число четное значит 0 , 2/2 = 1 .

Итак, мы получили число. Не забудьте счет идет справа налево: 100101 - вот мы получили число в двоичной системе. А вообще это записывается в виде деления в столбик, как вы видите ниже на рисунке:

2) Но есть второй способ. Он мне больше нравиться. Перевод из одной системы в другую идет в следующем виде:

где ai - i-я цифра числа;
k - количество цифр в дробной части числа;
m - количество цифр в целой части числа;
N - основание системы исчисления.

Основание системы счисления N показывает, во сколько раз "вес" i-го разряда больше "веса" (i-1) разряда. Целая часть числа отделяется от дробной части точкой (запятой).

Целая часть числа AN1, с основой N1, переводится в систему счисления с основанием N2 путем последовательного деления целой части числа AN1 на записанную в виде числа с основанием N1 основу N2, до получения остатка.Полученная доля снова делится на основание N2, и этот процесс необходимо повторять, пока частица не станет меньше делителя. Полученные остатки от деления и последняя часть записываются в порядке, обратном полученном при делении. Сформированное число и будет целым числом с основанием N2.

Дробная часть числа AN1, с основой N1, переводится в систему счисления с основанием N2 путем последовательного умножения дробной части числа AN1 на основание N2, записанную в виде числа с основанием N1. При каждом умножении целая часть произведения берется в виде очередной цифры соответствующего разряда, а дробная часть оставшейся принимается за новую умножений. Число умножений определяет разрядность полученного результата, представляющий дробную часть числа AN1 в системе счисления N2. Дробная часть числа при переводе часто представляется неточно.

Давайте это сделаем на примере:

Перевод с десятичной в двоичную

37 в десятичной нужно перевести в двоичную. Давайте поработаем со степенями:

2 0 = 1
2 1 = 2
2 2 = 4
2 3 = 8
2 4 = 16
2 5 = 32
2 6 = 64
2 7 = 128
2 8 = 256
2 9 = 512
2 10 = 1024 и так далее... до бесконечности

Значит: 37 - 32 = 5. 5 - 4 = 1. Ответ следующий в двоичной системе: 100101.

Давайте переведем число 658 из десятичной в двоичную:

658-512=146
146-128=18
18-16=2. В двоичной системе число будет иметь вид: 1010010010.

Перевод с десятичной в восмеричную

Если вам надо перевести с десятичной в восьмеричную, необходимо сначала перевести в двоичную, а затем с двоичной перевести в восьмеричную. То есть так проще, хотя можно и сразу перевести. По алгоритму подобному как в переводе в двоичную, см. выше.

Перевод с десятичной в шестнадцатеричной

Если вам надо перевести с десятичной в шестнадцатеричную, необходимо сначала перевести в двоичную, а затем с двоичной перевести в шестнадцатеричную. То есть так проще, хотя можно и сразу перевести. По алгоритму подобному как в переводе в двоичную, см. выше.

Перевод с двоичной в восмеричную

Чтобы перевести число из двоичной в восьмиричную систему нужно двоичное разбить по три числа.

К примеру полученное число 1010010010 разбивает по три числа, причем разбивка идет справа налево: 1 010 010 010 = 1222. Смотрите таблицу в самом начале.

Перевод с двоичной в шестнадцатеричную

Чтобы перевести число из двоичной в шестнадцатеричное, надо разбить на тетрады (по четыре)

10 1001 0010 = 292

Привожу несколько примеров, для того, чтобы вы просмотрели:

Перевод осуществляется из двоичной в восьмиричную, затем в шестнадцатеричную, а затем из двоичной десятичную

(2) = 11101110
(8) = 11 101 110 = 276
(16) = 1110 1110 = EE
(10) = 1*128+ 1*64+ 1*32+ 0 +1*8 + 1*4 + 1*2+ 0= 238
3) (8) = 657

Перевод осуществляется из шестнадцатеричной в двоичную, затем в восьмиричную, а затем из двоичной десятичную

(16) = 6E8
(2) = 110 1110 1000
(8) = 11 011 101 000 = 2250
(10) = 1*1024+1*512+ 0 +1*128+ 1*64+ 1*32+ 8 = 1768

В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.